-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinfer.py
191 lines (162 loc) · 6.25 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import logging
import os
import argparse
from pathlib import Path
from PIL import Image
from contextlib import nullcontext
import numpy as np
import torch
from tqdm.auto import tqdm
from diffusers.utils import check_min_version
from pipeline import LotusGPipeline, LotusDPipeline
from utils.image_utils import colorize_depth_map
from utils.seed_all import seed_all
check_min_version('0.28.0.dev0')
def parse_args():
'''Set the Args'''
parser = argparse.ArgumentParser(
description="Run Lotus..."
)
# model settings
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="pretrained model path from hugging face or local dir",
)
parser.add_argument(
"--prediction_type",
type=str,
default="sample",
help="The used prediction_type. ",
)
parser.add_argument(
"--timestep",
type=int,
default=999,
)
parser.add_argument(
"--mode",
type=str,
default="regression", # "generation"
help="Whether to use the generation or regression pipeline."
)
parser.add_argument(
"--task_name",
type=str,
default="depth", # "normal"
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
# inference settings
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
parser.add_argument(
"--input_dir", type=str, required=True, help="Input directory."
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
args = parser.parse_args()
return args
def main():
logging.basicConfig(level=logging.INFO)
logging.info(f"Run inference...")
args = parse_args()
# -------------------- Preparation --------------------
# Random seed
if args.seed is not None:
seed_all(args.seed)
# Output directories
os.makedirs(args.output_dir, exist_ok=True)
logging.info(f"Output dir = {args.output_dir}")
output_dir_color = os.path.join(args.output_dir, f'{args.task_name}_vis')
output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}')
if not os.path.exists(output_dir_color): os.makedirs(output_dir_color)
if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)
# half_precision
if args.half_precision:
dtype = torch.float16
logging.info(f"Running with half precision ({dtype}).")
else:
dtype = torch.float32
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"Device = {device}")
# -------------------- Data --------------------
root_dir = Path(args.input_dir)
test_images = list(root_dir.rglob('*.png')) + list(root_dir.rglob('*.jpg'))
test_images = sorted(test_images)
print('==> There are', len(test_images), 'images for validation.')
# -------------------- Model --------------------
if args.mode == 'generation':
pipeline = LotusGPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
elif args.mode == 'regression':
pipeline = LotusDPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
else:
raise ValueError(f'Invalid mode: {args.mode}')
logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")
pipeline = pipeline.to(device)
pipeline.set_progress_bar_config(disable=True)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
# -------------------- Inference and saving --------------------
with torch.no_grad():
for i in tqdm(range(len(test_images))):
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipeline.device.type)
with autocast_ctx:
# Preprocess validation image
test_image = Image.open(test_images[i]).convert('RGB')
test_image = np.array(test_image).astype(np.float32)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
# Run
pred = pipeline(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[args.timestep],
task_emb=task_emb,
).images[0]
# Post-process the prediction
save_file_name = os.path.basename(test_images[i])[:-4]
if args.task_name == 'depth':
output_npy = pred.mean(axis=-1)
output_color = colorize_depth_map(output_npy)
else:
output_npy = pred
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
torch.cuda.empty_cache()
print('==> Inference is done. \n==> Results saved to:', args.output_dir)
if __name__ == '__main__':
main()