-
Notifications
You must be signed in to change notification settings - Fork 19
/
training.py
163 lines (132 loc) · 5.04 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import division
import os
import time
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import NECAgent
#TODO: Split this into a separate agent initiation of agent and env and training
def run_agent(args):
# Launch the graph
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
# Set up training variables
training_iters = args.training_iters
display_step = args.display_step
test_step = args.test_step
test_count = args.test_count
tests_done = 0
test_results = []
# Stats for display
ep_rewards = [] ; ep_reward_last = 0
qs = [] ; q_last = 0
avr_ep_reward = max_ep_reward = avr_q = 0.0
# Set precision for printing numpy arrays, useful for debugging
#np.set_printoptions(threshold='nan', precision=3, suppress=True)
mode = args.model
# Create environment
if args.env_type == 'ALE':
from environment import ALEEnvironment
env = ALEEnvironment(args.rom)
if mode is None: mode = 'DQN'
args.num_actions = env.numActions()
elif args.env_type == 'gym':
import gym
try:
import gym_vgdl #This can be found on my github if you want to use it.
except:
pass
env = gym.make(args.env)
if mode is None:
shape = env.observation_space.shape
if len(shape) is 3: mode = 'DQN'
elif shape[0] is None: mode = 'object'
else: mode = 'vanilla'
args.num_actions = env.action_space.n #only works with discrete action spaces
# Set agent variables
if mode=='DQN':
args.model = 'CNN'
args.preprocessor = 'deepmind'
args.obs_size = [84,84]
args.history_len = 4
elif mode=='image':
args.model = 'CNN'
args.preprocessor = 'grayscale'
args.obs_size = list(env.observation_space.shape)[:2]
args.history_len = 2
elif mode=='object':
args.model = 'object'
args.preprocessor = 'default'
args.obs_size = list(env.observation_space.shape)
args.history_len = 0
elif mode=='vanilla':
args.model = 'nn'
args.preprocessor = 'default'
args.obs_size = list(env.observation_space.shape)
args.history_len = 0
# Create agent
agent = NECAgent.NECAgent(sess, args)
# Initialize all tensorflow variables
sess.run(tf.global_variables_initializer())
# Keep training until reach max iterations
# Start Agent
state = env.reset()
agent.Reset(state)
rewards = []
for step in tqdm(range(training_iters), ncols=80):
#env.render()
# Act, and add
action, value = agent.GetAction()
state, reward, terminal, info = env.step(action)
agent.Update(action, reward, state, terminal)
# Bookeeping
rewards.append(reward)
qs.append(value)
if terminal:
# Bookeeping
ep_rewards.append(np.sum(rewards))
rewards = []
if step >= (tests_done+1)*test_step:
R_s = []
for i in tqdm(range(test_count), ncols=50, bar_format='Testing: |{bar}| {n_fmt}/{total_fmt}'):
R = test_agent(agent, env)
R_s.append(R)
tqdm.write("Tests: {}".format(R_s))
tests_done += 1
test_results.append({ 'step': step, 'scores': R_s, 'average': np.mean(R_s), 'max': np.max(R_s) })
#Save to file
summary = { 'params': args, 'tests': test_results }
if args.save_file is not None:
np.save(args.save_file, summary)
# Reset agent and environment
state = env.reset()
agent.Reset(state)
# Display Statistics
if (step) % display_step == 0:
num_eps = len(ep_rewards[ep_reward_last:])
if num_eps is not 0:
avr_ep_reward = np.mean(ep_rewards[ep_reward_last:])
max_ep_reward = np.max(ep_rewards[ep_reward_last:])
avr_q = np.mean(qs[q_last:]) ; q_last = len(qs)
ep_reward_last = len(ep_rewards)
dict_entries = agent.DND.tot_capacity()
tqdm.write("{}, {:>7}/{}it | {:3n} episodes,"\
.format(time.strftime("%H:%M:%S"), step, training_iters, num_eps)
+"q: {:4.3f}, avr_ep_r: {:4.1f}, max_ep_r: {:4.1f}, epsilon: {:4.3f}, entries: {}"\
.format(avr_q, avr_ep_reward, max_ep_reward, agent.epsilon, dict_entries))
def test_agent(agent, env):
#TODO: Add some stochasticity to this somehow so it doesn't just do the same deterministic run 5 times.
try:
state = env.reset(train=False)
except:
state = env.reset()
agent.Reset(state, train=False)
R = 0
terminal = False
while not terminal:
action, value = agent.GetAction()
state, reward, terminal, info = env.step(action)
agent.Update(action, reward, state, terminal)
R += reward
return R