-
Notifications
You must be signed in to change notification settings - Fork 34
/
train_NAB.py
367 lines (303 loc) · 14.3 KB
/
train_NAB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import torch.autograd as autograd
import torch.optim as optim
import torch.nn.init as init
from sklearn.metrics.pairwise import cosine_similarity
import scipy.integrate as integrate
from termcolor import cprint
from time import gmtime, strftime
import numpy as np
import argparse
import os
import random
import glob
import copy
import json
from dataset import FeatDataLayer, LoadDataset_NAB
from models import _netD, _netG, _param
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='0', type=str, help='index of GPU to use')
parser.add_argument('--splitmode', default='easy', type=str, help='the way to split train/test data: easy/hard')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--resume', type=str, help='the model to resume')
parser.add_argument('--disp_interval', type=int, default=20)
parser.add_argument('--save_interval', type=int, default=200)
parser.add_argument('--evl_interval', type=int, default=40)
opt = parser.parse_args()
print('Running parameters:')
print(json.dumps(vars(opt), indent=4, separators=(',', ':')))
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
""" hyper-parameter for training """
opt.GP_LAMBDA = 10 # Gradient penalty lambda
opt.CENT_LAMBDA = 1
opt.REG_W_LAMBDA = 0.001
opt.REG_Wz_LAMBDA = 0.0001
opt.lr = 0.0001
opt.batchsize = 1000
""" hyper-parameter for testing"""
opt.nSample = 60 # number of fake feature for each class
opt.Knn = 20 # knn: the value of K
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
def train():
param = _param()
dataset = LoadDataset_NAB(opt)
param.X_dim = dataset.feature_dim
data_layer = FeatDataLayer(dataset.labels_train, dataset.pfc_feat_data_train, opt)
result = Result()
result_gzsl = Result()
netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
netG.apply(weights_init)
print(netG)
netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
netD.apply(weights_init)
print(netD)
exp_info = 'NAB_EASY' if opt.splitmode == 'easy' else 'NAB_HARD'
exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA , opt.REG_W_LAMBDA, opt.REG_Wz_LAMBDA)
out_dir = 'out/{:s}'.format(exp_info)
out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
if not os.path.exists('out'):
os.mkdir('out')
if not os.path.exists(out_dir):
os.mkdir(out_dir)
if not os.path.exists(out_subdir):
os.mkdir(out_subdir)
cprint(" The output dictionary is {}".format(out_subdir), 'red')
log_dir = out_subdir + '/log_{:s}.txt'.format(exp_info)
with open(log_dir, 'a') as f:
f.write('Training Start:')
f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')
start_step = 0
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
netG.load_state_dict(checkpoint['state_dict_G'])
netD.load_state_dict(checkpoint['state_dict_D'])
start_step = checkpoint['it']
print(checkpoint['log'])
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
nets = [netG, netD]
tr_cls_centroid = Variable(torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
for it in range(start_step, 3000+1):
""" Discriminator """
for _ in range(5):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
text_feat = np.array([dataset.train_text_feature[i,:] for i in labels])
text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
X = Variable(torch.from_numpy(feat_data)).cuda()
y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()
# GAN's D loss
D_real, C_real = netD(X)
D_loss_real = torch.mean(D_real)
C_loss_real = F.cross_entropy(C_real, y_true)
DC_loss = -D_loss_real + C_loss_real
DC_loss.backward()
# GAN's D loss
G_sample = netG(z, text_feat).detach()
D_fake, C_fake = netD(G_sample)
D_loss_fake = torch.mean(D_fake)
C_loss_fake = F.cross_entropy(C_fake, y_true)
DC_loss = D_loss_fake + C_loss_fake
DC_loss.backward()
# train with gradient penalty (WGAN_GP)
grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
grad_penalty.backward()
Wasserstein_D = D_loss_real - D_loss_fake
optimizerD.step()
reset_grad(nets)
""" Generator """
for _ in range(1):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
text_feat = np.array([dataset.train_text_feature[i, :] for i in labels])
text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
X = Variable(torch.from_numpy(feat_data)).cuda()
y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()
G_sample = netG(z, text_feat)
D_fake, C_fake = netD(G_sample)
_, C_real = netD(X)
# GAN's G loss
G_loss = torch.mean(D_fake)
# Auxiliary classification loss
C_loss = (F.cross_entropy(C_real, y_true) + F.cross_entropy(C_fake, y_true))/2
GC_loss = -G_loss + C_loss
# Centroid loss
Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
if opt.CENT_LAMBDA != 0:
for i in range(dataset.train_cls_num):
sample_idx = (y_true == i).data.nonzero().squeeze()
if sample_idx.numel() == 0:
Euclidean_loss += 0.0
else:
G_sample_cls = G_sample[sample_idx, :]
Euclidean_loss += (G_sample_cls.mean(dim=0) - tr_cls_centroid[i]).pow(2).sum().sqrt()
Euclidean_loss *= 1.0/dataset.train_cls_num * opt.CENT_LAMBDA
# ||W||_2 regularization
reg_loss = Variable(torch.Tensor([0.0])).cuda()
if opt.REG_W_LAMBDA != 0:
for name, p in netG.named_parameters():
if 'weight' in name:
reg_loss += p.pow(2).sum()
reg_loss.mul_(opt.REG_W_LAMBDA)
# ||W_z||21 regularization, make W_z sparse
reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
if opt.REG_Wz_LAMBDA != 0:
Wz = netG.rdc_text.weight
reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)
all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss
all_loss.backward()
optimizerG.step()
reset_grad(nets)
if it % opt.disp_interval == 0 and it:
acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
log_text = 'Iter-{}; Was_D: {:.4}; Euc_ls: {:.4}; reg_ls: {:.4}; Wz_ls: {:.4}; G_loss: {:.4}; D_loss_real: {:.4};' \
' D_loss_fake: {:.4}; rl: {:.4}%; fk: {:.4}%'\
.format(it, Wasserstein_D.data[0], Euclidean_loss.data[0], reg_loss.data[0],reg_Wz_loss.data[0],
G_loss.data[0], D_loss_real.data[0], D_loss_fake.data[0], acc_real * 100, acc_fake * 100)
print(log_text)
with open(log_dir, 'a') as f:
f.write(log_text+'\n')
if it % opt.evl_interval == 0 and it >= 100:
netG.eval()
eval_fakefeat_test(it, netG, dataset, param, result)
eval_fakefeat_GZSL(it, netG, dataset, param, result_gzsl)
if result.save_model:
files2remove = glob.glob(out_subdir + '/Best_model*')
for _i in files2remove:
os.remove(_i)
torch.save({
'it': it + 1,
'state_dict_G': netG.state_dict(),
'state_dict_D': netD.state_dict(),
'random_seed': opt.manualSeed,
'log': log_text,
}, out_subdir + '/Best_model_Acc_{:.2f}.tar'.format(result.acc_list[-1]))
netG.train()
if it % opt.save_interval == 0 and it:
torch.save({
'it': it + 1,
'state_dict_G': netG.state_dict(),
'state_dict_D': netD.state_dict(),
'random_seed': opt.manualSeed,
'log': log_text,
}, out_subdir + '/Iter_{:d}.tar'.format(it))
cprint('Save model to ' + out_subdir + '/Iter_{:d}.tar'.format(it), 'red')
def eval_fakefeat_test(it, netG, dataset, param, result):
gen_feat = np.zeros([0, dataset.feature_dim])
for i in range(dataset.test_cls_num):
text_feat = np.tile(dataset.test_text_feature[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, param.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat = np.vstack((gen_feat, G_sample.data.cpu().numpy()))
# cosince predict K-nearest Neighbor
sim = cosine_similarity(dataset.pfc_feat_data_test, gen_feat)
idx_mat = np.argsort(-1 * sim, axis=1)
label_mat = (idx_mat[:, 0:opt.Knn] / opt.nSample).astype(int)
preds = np.zeros(label_mat.shape[0])
for i in range(label_mat.shape[0]):
(values, counts) = np.unique(label_mat[i], return_counts=True)
preds[i] = values[np.argmax(counts)]
# produce acc
label_T = np.asarray(dataset.labels_test)
acc = (preds == label_T).mean() * 100
result.acc_list += [acc]
result.iter_list += [it]
result.save_model = False
if acc > result.best_acc:
result.best_acc = acc
result.best_iter = it
result.save_model = True
print("{}nn Classifier: ".format(opt.Knn))
print("Accuracy is {:.4}%".format(acc))
""" Generalized ZSL"""
def eval_fakefeat_GZSL(it, netG, dataset, param, result):
gen_feat = np.zeros([0, param.X_dim])
for i in range(dataset.train_cls_num):
text_feat = np.tile(dataset.train_text_feature[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, param.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat = np.vstack((gen_feat, G_sample.data.cpu().numpy()))
for i in range(dataset.test_cls_num):
text_feat = np.tile(dataset.test_text_feature[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, param.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat = np.vstack((gen_feat, G_sample.data.cpu().numpy()))
visual_pivots = [gen_feat[i * opt.nSample:(i + 1) * opt.nSample].mean(0) \
for i in range(dataset.train_cls_num + dataset.test_cls_num)]
visual_pivots = np.vstack(visual_pivots)
"""collect points for gzsl curve"""
acc_S_T_list, acc_U_T_list = list(), list()
seen_sim = cosine_similarity(dataset.pfc_feat_data_train, visual_pivots)
unseen_sim = cosine_similarity(dataset.pfc_feat_data_test, visual_pivots)
for GZSL_lambda in np.arange(-2, 2, 0.01):
tmp_seen_sim = copy.deepcopy(seen_sim)
tmp_seen_sim[:, dataset.train_cls_num:] += GZSL_lambda
pred_lbl = np.argmax(tmp_seen_sim, axis=1)
acc_S_T_list.append((pred_lbl == np.asarray(dataset.labels_train)).mean())
tmp_unseen_sim = copy.deepcopy(unseen_sim)
tmp_unseen_sim[:, dataset.train_cls_num:] += GZSL_lambda
pred_lbl = np.argmax(tmp_unseen_sim, axis=1)
acc_U_T_list.append((pred_lbl == (np.asarray(dataset.labels_test) + dataset.train_cls_num)).mean())
auc_score = integrate.trapz(y=acc_S_T_list, x=acc_U_T_list)
result.acc_list += [auc_score]
result.iter_list += [it]
result.save_model = False
if auc_score > result.best_acc:
result.best_acc = auc_score
result.best_iter = it
result.save_model = True
print("AUC Score is {:.4}".format(auc_score))
class Result(object):
def __init__(self):
self.best_acc = 0.0
self.best_iter = 0.0
self.acc_list = []
self.iter_list = []
self.save_model = False
def weights_init(m):
classname = m.__class__.__name__
if 'Linear' in classname:
init.xavier_normal(m.weight.data)
init.constant(m.bias, 0.0)
def reset_grad(nets):
for net in nets:
net.zero_grad()
def label2mat(labels, y_dim):
c = np.zeros([labels.shape[0], y_dim])
for idx, d in enumerate(labels):
c[idx, d] = 1
return c
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(opt.batchsize, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = interpolates.cuda()
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates, _ = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.GP_LAMBDA
return gradient_penalty
if __name__ == "__main__":
train()