- Harada, T. and Alba, E., 2020. Parallel genetic algorithms: A useful survey. ACM Computing Surveys, 53(4), pp.1-39.
- Wang, R. and Zhi, J., 2020, July. A hands-on guide to distributed computing paradigms for evolutionary computation. In Proceedings of Genetic and Evolutionary Computation Conference Companion (pp. 1055-1074). ACM.
- Alba, E., Luque, G. and Nesmachnow, S., 2013. Parallel metaheuristics: Recent advances and new trends. International Transactions in Operational Research, 20(1), pp.1-48.
- Luque, G. and Alba, E., 2011. Parallel genetic algorithms: Theory and real world applications. Springer.
- Alba, E., Talbi, E.G., Luque, G. and Melab, N., 2005. Parallel metaheuristics: A new class of algorithms. Wiley.
- Cahon, S., Melab, N. and Talbi, E.G., 2004. Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics, 10(3), pp.357-380.
- Alba, E. and Tomassini, M., 2002. Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 6(5), pp.443-462.
- Nowostawski, M. and Poli, R., 1999, August. Parallel genetic algorithm taxonomy. In International Conference on Knowledge-Based Intelligent Information Engineering Systems (pp. 88-92). IEEE.
- Ferrucci, F., Salza, P. and Sarro, F., 2018. Using hadoop mapreduce for parallel genetic algorithms: A comparison of the global, grid and island models. Evolutionary Computation, 26(4), pp.535-567.