-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathcosyne.py
147 lines (129 loc) · 7.59 KB
/
cosyne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np # engine for numerical computing
from pypop7.optimizers.cc.cc import CC # abstract class of all cooperative coevolution (CC) classes
class COSYNE(CC):
"""CoOperative SYnapse NEuroevolution (COSYNE).
.. note:: This is a wrapper of `COSYNE`, which has been implemented in the Python library `EvoTorch
<https://docs.evotorch.ai/v0.3.0/reference/evotorch/algorithms/ga/#evotorch.algorithms.ga.Cosyne>`_,
with slight modifications.
Parameters
----------
problem : dict
problem arguments with the following common settings (`keys`):
* 'fitness_function' - objective function to be **minimized** (`func`),
* 'ndim_problem' - number of dimensionality (`int`),
* 'upper_boundary' - upper boundary of search range (`array_like`),
* 'lower_boundary' - lower boundary of search range (`array_like`).
options : dict
optimizer options with the following common settings (`keys`):
* 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.inf`),
* 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.inf`),
* 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`);
and with the following particular settings (`keys`):
* 'sigma' - initial global step-size for Gaussian search distribution (`float`),
* 'n_individuals' - number of individuals/samples, aka population size (`int`, default: `100`),
* 'n_tournaments' - number of tournaments for one-point crossover (`int`, default: `10`),
* 'ratio_elitists' - ratio of elitists (`float`, default: `0.3`).
Examples
--------
Use the optimizer to minimize the well-known test function
`Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_:
.. code-block:: python
:linenos:
>>> import numpy
>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized
>>> from pypop7.optimizers.cc.cosyne import COSYNE
>>> problem = {'fitness_function': rosenbrock, # define problem arguments
... 'ndim_problem': 2,
... 'lower_boundary': -5*numpy.ones((2,)),
... 'upper_boundary': 5*numpy.ones((2,))}
>>> options = {'max_function_evaluations': 5000, # set optimizer options
... 'seed_rng': 2022,
... 'sigma': 0.3,
... 'x': 3*numpy.ones((2,))}
>>> cosyne = COSYNE(problem, options) # initialize the optimizer class
>>> results = cosyne.optimize() # run the optimization process
>>> # return the number of function evaluations and best-so-far fitness
>>> print(f"COSYNE: {results['n_function_evaluations']}, {results['best_so_far_y']}")
COSYNE: 5000, 0.005023488269997175
For its correctness checking of coding, refer to `this code-based repeatability report
<https://tinyurl.com/yff8c6xu>`_ for more details.
Attributes
----------
n_individuals : `int`
number of individuals/samples, aka population size.
n_tournaments : `int`
number of tournaments for one-point crossover.
ratio_elitists : `float`
ratio of elitists.
sigma : `float`
initial global step-size for Gaussian search (mutation/sampling) distribution.
References
----------
Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008.
Accelerated neural evolution through cooperatively coevolved synapses.
Journal of Machine Learning Research, 9(31), pp.937-965.
https://jmlr.org/papers/v9/gomez08a.html
https://docs.evotorch.ai/v0.3.0/reference/evotorch/algorithms/ga/#evotorch.algorithms.ga.Cosyne
https://github.com/nnaisense/evotorch/blob/master/src/evotorch/algorithms/ga.py
"""
def __init__(self, problem, options):
CC.__init__(self, problem, options)
self.sigma = options.get('sigma') # global step-size for Gaussian search distribution
self.n_tournaments = options.get('n_tournament', 10) # number of tournaments for one-point crossover
self.ratio_elitists = options.get('ratio_elitists', 0.3) # ratio of elitists
self._n_elitists = int(self.ratio_elitists*self.n_individuals) # number of elitists
self._n_parents = int(self.n_individuals/4) # parents for crossover and mutation
def initialize(self, args=None, is_restart=False):
x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary,
size=(self.n_individuals, self.ndim_problem)) # population
y = np.empty((self.n_individuals,)) # fitness
for i in range(self.n_individuals):
if self._check_terminations():
return x, y
y[i] = self._evaluate_fitness(x[i], args)
return x, y
def _crossover(self, x, y): # one-point crossover
xx = np.empty((2*len(y), self.ndim_problem))
for i in range(len(y)):
left = self.rng_optimization.choice(len(y), size=(self.n_tournaments,), replace=False)
left = x[np.argmin(y[left])]
right = self.rng_optimization.choice(len(y), size=(self.n_tournaments,), replace=False)
right = x[np.argmin(y[right])]
p = self.rng_optimization.choice(self.ndim_problem)
xx[2*i], xx[2*i + 1] = np.append(left[:p], right[p:]), np.append(right[:p], left[p:])
return xx
def _mutate(self, x): # mutation for all dimensions
x += self.sigma*self.rng_optimization.standard_normal(size=(x.shape[0], self.ndim_problem))
x = np.clip(x, self.lower_boundary, self.upper_boundary)
return x
def _permute(self, x): # different from the original paper for simplicity
xx = np.copy(x)
for d in range(self.ndim_problem):
p = self.rng_optimization.choice(self.n_individuals)
xx[:, d] = np.append(xx[p:, d], xx[:p, d])
return xx
def iterate(self, x=None, y=None, args=None):
order, yy, yyy = np.argsort(y), np.empty((2*self._n_parents,)), np.empty((self.n_individuals,))
xx = self._mutate(self._crossover(x[order[:self.n_parents]], y[order[:self.n_parents]]))
for i in range(2*self._n_parents):
if self._check_terminations():
return x, y, np.append(yy, yyy)
yy[i] = self._evaluate_fitness(xx[i], args)
xxx = self._permute(x)
for i in range(self.n_individuals):
if self._check_terminations():
return x, y, np.append(yy, yyy)
yyy[i] = self._evaluate_fitness(xxx[i], args)
x = np.vstack((np.vstack((x[order[:self._n_elitists]], xx)), xxx))
y = np.hstack((np.hstack((y[order[:self._n_elitists]], yy)), yyy))
order = np.argsort(y)[:self.n_individuals] # to keep population size fixed
self._n_generations += 1
return x[order], y[order], np.append(yy, yyy)
def optimize(self, fitness_function=None, args=None):
fitness = CC.optimize(self, fitness_function)
x, y = self.initialize(args)
yy = y # only for printing
while not self._check_terminations():
self._print_verbose_info(fitness, yy)
x, y, yy = self.iterate(x, y, args)
return self._collect(fitness, yy)