-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmaes.py
198 lines (175 loc) · 10.4 KB
/
maes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np # engine for numerical computing
from pypop7.optimizers.es.es import ES # abstract class of all Evolution Strategies (ES) classes
class MAES(ES):
"""Matrix Adaptation Evolution Strategy (MAES).
.. note:: `MAES` is a powerful *simplified* version of the well-established `CMA-ES` algorithm nearly without
significant performance loss, designed in 2017 by `Beyer <https://homepages.fhv.at/hgb/>`_ and Sendhoff
(*IEEE Fellow*). One obvious advantage of such a simplification is to help better understand the underlying
working principles (e.g., **invariance** and **unbias**) of `CMA-ES`, which are often thought to be rather
complex for newcomers. It is **highly recommended** to first attempt more advanced `ES` variants (e.g.,
`LMCMA`, `LMMAES`) for large-scale black-box optimization, since `MAES` has a *cubic* time complexity (w.r.t.
each sampling). Note that another improved version called `FMAES` provides a *relatively more efficient*
implementation for `MAES` with *quadratic* time complexity (w.r.t. each sampling).
Parameters
----------
problem : dict
problem arguments with the following common settings (`keys`):
* 'fitness_function' - objective function to be **minimized** (`func`),
* 'ndim_problem' - number of dimensionality (`int`),
* 'upper_boundary' - upper boundary of search range (`array_like`),
* 'lower_boundary' - lower boundary of search range (`array_like`).
options : dict
optimizer options with the following common settings (`keys`):
* 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.inf`),
* 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.inf`),
* 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`);
and with the following particular settings (`keys`):
* 'sigma' - initial global step-size, aka mutation strength (`float`),
* 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`),
* if not given, it will draw a random sample from the uniform distribution whose search range is
bounded by `problem['lower_boundary']` and `problem['upper_boundary']`.
* 'n_individuals' - number of offspring, aka offspring population size (`int`, default:
`4 + int(3*np.log(problem['ndim_problem']))`),
* 'n_parents' - number of parents, aka parental population size (`int`, default:
`int(options['n_individuals']/2)`).
Examples
--------
Use the black-box optimizer `MAES` to minimize the well-known test function
`Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_:
.. code-block:: python
:linenos:
>>> import numpy # engine for numerical computing
>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized
>>> from pypop7.optimizers.es.maes import MAES
>>> problem = {'fitness_function': rosenbrock, # to define problem arguments
... 'ndim_problem': 2,
... 'lower_boundary': -5.0*numpy.ones((2,)),
... 'upper_boundary': 5.0*numpy.ones((2,))}
>>> options = {'max_function_evaluations': 5000, # to set optimizer options
... 'seed_rng': 2022,
... 'mean': 3.0*numpy.ones((2,)),
... 'sigma': 3.0} # global step-size may need to be fine-tuned for better performance
>>> maes = MAES(problem, options) # to initialize the optimizer class
>>> results = maes.optimize() # to run the optimization/evolution process
>>> print(f"MAES: {results['n_function_evaluations']}, {results['best_so_far_y']}")
MAES: 5000, 1.3259e-17
For its correctness checking of Python coding, please refer to `this code-based repeatability report
<https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_maes.py>`_
for all details. For *pytest*-based automatic testing, please see `test_maes.py
<https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/test_maes.py>`_.
Attributes
----------
mean : `array_like`
initial (starting) point, aka mean of Gaussian search distribution.
n_individuals : `int`
number of offspring, aka offspring population size.
n_parents : `int`
number of parents, aka parental population size.
sigma : `float`
final global step-size, aka mutation strength.
References
----------
Beyer, H.G., 2020, July.
`Design principles for matrix adaptation evolution strategies.
<https://dl.acm.org/doi/abs/10.1145/3377929.3389870>`_
In Proceedings of ACM Conference on Genetic and Evolutionary Computation Companion (pp. 682-700).
Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019.
`Large scale black-box optimization by limited-memory matrix adaptation.
<https://ieeexplore.ieee.org/abstract/document/8410043>`_
IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358.
Beyer, H.G. and Sendhoff, B., 2017.
`Simplify your covariance matrix adaptation evolution strategy.
<https://ieeexplore.ieee.org/document/7875115>`_
IEEE Transactions on Evolutionary Computation, 21(5), pp.746-759.
Please refer to the *official* Matlab version from Prof. Beyer:
https://homepages.fhv.at/hgb/downloads/ForDistributionFastMAES.tar
"""
def __init__(self, problem, options):
ES.__init__(self, problem, options)
self.options = options
self.c_s = None
self.c_1 = None
self.c_w = None
self.d_sigma = None
self._alpha_cov = 2.0
self._s_1 = None
self._s_2 = None
self._fast_version = options.get('_fast_version', False)
if not self._fast_version:
self._diag_one = np.eye(self.ndim_problem)
def _set_c_w(self):
return np.minimum(1.0 - self.c_1, self._alpha_cov*(self._mu_eff + 1.0/self._mu_eff - 2.0) /
(np.power(self.ndim_problem + 2.0, 2) + self._alpha_cov*self._mu_eff/2.0))
def _set_d_sigma(self):
return 1.0 + self.c_s + 2.0*np.maximum(0.0, np.sqrt((self._mu_eff - 1.0)/(self.ndim_problem + 1.0)) - 1.0)
def initialize(self, is_restart=False):
self.c_s = self.options.get('c_s', (self._mu_eff + 2.0)/(self._mu_eff + self.ndim_problem + 5.0))
self.c_1 = self.options.get('c_1', self._alpha_cov/(np.power(self.ndim_problem + 1.3, 2) + self._mu_eff))
self.c_w = self.options.get('c_w', self._set_c_w())
self.d_sigma = self.options.get('d_sigma', self._set_d_sigma())
self._s_1 = 1.0 - self.c_s
self._s_2 = np.sqrt(self._mu_eff*self.c_s*(2.0 - self.c_s))
z = np.empty((self.n_individuals, self.ndim_problem)) # Gaussian noise for mutation
d = np.empty((self.n_individuals, self.ndim_problem)) # search directions
mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution
s = np.zeros((self.ndim_problem,)) # evolution path
tm = np.eye(self.ndim_problem) # transformation matrix
y = np.empty((self.n_individuals,)) # fitness (no evaluation)
self._list_initial_mean.append(np.copy(mean))
return z, d, mean, s, tm, y
def iterate(self, z=None, d=None, mean=None, tm=None, y=None, args=None):
for k in range(self.n_individuals): # to sample offspring population
if self._check_terminations():
return z, d, y
z[k] = self.rng_optimization.standard_normal((self.ndim_problem,))
d[k] = np.dot(tm, z[k])
y[k] = self._evaluate_fitness(mean + self.sigma*d[k], args)
return z, d, y
def _update_distribution(self, z=None, d=None, mean=None, s=None, tm=None, y=None):
order = np.argsort(y)
d_w, z_w, zz_w = np.zeros((self.ndim_problem,)), np.zeros((self.ndim_problem,)), None
if not self._fast_version:
zz_w = np.zeros((self.ndim_problem, self.ndim_problem))
for k in range(self.n_parents):
d_w += self._w[k]*d[order[k]]
z_w += self._w[k]*z[order[k]]
if not self._fast_version:
zz_w += self._w[k]*np.outer(z[order[k]], z[order[k]])
# update distribution mean
mean += self.sigma*d_w
# update evolution path (s) and transformation matrix (M)
s = self._s_1*s + self._s_2*z_w
if not self._fast_version:
tm_1 = self.c_1*(np.outer(s, s) - self._diag_one)
tm_2 = self.c_w*(zz_w - self._diag_one)
tm += 0.5*np.dot(tm, tm_1 + tm_2)
else:
tm = (1.0 - 0.5*(self.c_1 + self.c_w))*tm + (0.5*self.c_1)*np.dot(
np.dot(tm, s[:, np.newaxis]), s[np.newaxis, :])
for k in range(self.n_parents):
tm += (0.5*self.c_w)*self._w[k]*np.outer(d[order[k]], z[order[k]])
# update global step-size
self.sigma *= np.exp(self.c_s/self.d_sigma*(np.linalg.norm(s)/self._e_chi - 1.0))
return mean, s, tm
def restart_reinitialize(self, z=None, d=None, mean=None, s=None, tm=None, y=None):
if ES.restart_reinitialize(self, y):
z, d, mean, s, tm, y = self.initialize(True)
return z, d, mean, s, tm, y
def optimize(self, fitness_function=None, args=None): # for all generations (iterations)
fitness = ES.optimize(self, fitness_function)
z, d, mean, s, tm, y = self.initialize()
while not self.termination_signal:
# sample and evaluate offspring population
z, d, y = self.iterate(z, d, mean, tm, y, args)
if self._check_terminations():
break
mean, s, tm = self._update_distribution(z, d, mean, s, tm, y)
self._print_verbose_info(fitness, y)
self._n_generations += 1
if self.is_restart:
z, d, mean, s, tm, y = self.restart_reinitialize(z, d, mean, s, tm, y)
results = self._collect(fitness, y, mean)
results['s'] = s
# by default, do NOT save transformation matrix of search distribution in order to save memory,
# owing to its *quadratic* space complexity
return results