-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_s_efficiency.py
52 lines (43 loc) · 2.08 KB
/
test_s_efficiency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""This module is used to run experiments to investigate weather FSI is s-efficient."""
import numpy as np
from games import ParameterizedSparseLinearModel
from approximators import SHAPIQEstimator
if __name__ == "__main__":
# game settings
N_FEATURES: int = 10 # number of players
N_INTERACTIONS: int = 30 # number of interactions in the model
N_NON_IMPORTANT_FEATURES: int = 0 # percentage of dummy players (zero value players)
# SHAP-IQ settings
s_0 = 2 # interaction order to compute values for
# Game Function --------------------------------------------------------------------------------
game = ParameterizedSparseLinearModel(
n=N_FEATURES,
weighting_scheme="uniform",
min_interaction_size=1,
max_interaction_size=N_FEATURES - 1,
n_interactions=N_INTERACTIONS,
n_non_important_features=N_NON_IMPORTANT_FEATURES
)
game_name = game.game_name
game_fun = game.set_call
n = game.n
N = set(range(n))
# Estimator ------------------------------------------------------------------------------------
shapley_extractor_FSI = SHAPIQEstimator(N, order=s_0, interaction_type="FSI")
shapley_extractor_sti = SHAPIQEstimator(N, order=s_0, interaction_type="STI")
shapley_extractor_sii = SHAPIQEstimator(N, order=s_0, interaction_type="SII")
shap_iq_estimators = {
"SII": shapley_extractor_sii,
"STI": shapley_extractor_sti,
"FSI": shapley_extractor_FSI
}
# Compute s-efficiency -------------------------------------------------------------------------
for interaction_index, approximator in shap_iq_estimators.items():
print(f"Running SHAP-IQ for {interaction_index} d = {n} with s_0 = {s_0} and k in range "
f"[{s_0}, {n - s_0}]:")
s_efficiency = np.zeros(shape=(n, n))
for k in range(s_0, n - s_0 + 1):
s_efficiency += approximator._compute_interactions_complete_k(game=game_fun, k=k)[s_0]
sum_s_efficiency = np.sum(s_efficiency)
print(f"Sum of terms with set sizes k: {sum_s_efficiency}")
print()