-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
470 lines (377 loc) · 15.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from flask import Flask, render_template, Response, redirect, url_for, request
#from flask_ngrok import run_with_ngrok
import os
import time
import cv2
import torch
from torch.autograd import Variable
import cv2
from PIL import Image
from spatial_transforms_new import *
from utils import Queue
import time
import torch.nn.functional as F
from load_model import Opt, load_models
from IPython.display import display,Audio
from playsound import playsound
import ffmpeg
def check_rotation(path_video_file):
# this returns meta-data of the video file in form of a dictionary
meta_dict = ffmpeg.probe(path_video_file)
# from the dictionary, meta_dict['streams'][0]['tags']['rotate'] is the key
# we are looking for
rotateCode = None
# print(meta_dict['streams'][0]['tags'].keys())
if 'rotate' in meta_dict['streams'][0]['tags'].keys():
if int(meta_dict['streams'][0]['tags']['rotate']) == 90:
rotateCode = cv2.ROTATE_90_CLOCKWISE
elif int(meta_dict['streams'][0]['tags']['rotate']) == 180:
rotateCode = cv2.ROTATE_180
elif int(meta_dict['streams'][0]['tags']['rotate']) == 270:
rotateCode = cv2.ROTATE_90_COUNTERCLOCKWISE
return rotateCode
opt=Opt(path_det='./detector.pth',path_clf='./classifier.pth')
print('loading models...')
detector,classifier=load_models(opt)
print('models loaded successfully!')
audio_files_path='./audio_files/mp3/'
key_to_audio={}
key_to_file={}
def load_audio_files(path):
global key_to_audio,key_to_file
import os
str_to_num={'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'10':10}
if not os.path.isdir(path):
print('audio_files_directory does not exist')
return
files_lst=os.listdir(path)
#key_to_audio={}
for el in files_lst:
ind=str_to_num[el[:-4]]
key_to_audio[ind]=Audio(path+el,autoplay=True)
key_to_file[ind]=path+el
load_audio_files(audio_files_path)
class Prediction():
def __init__(self,rotate_code=None):
self.root_path='.'
self.no_cuda=True
self.top2_diff_threshold=.75
self.freq_threshold=3
self._6_freq_threshold=3#6
self.pred_cls_queue_size=12
self.n_classes_clf=11
self.n_classes_det=2
self.det_queue_size=4
self.clf_queue_size=4
self.sample_duration=16
self.sample_duration_det=8
self.det_strategy='ma'
self.clf_strategy='ma'
self.mean=[114.7748, 107.7354, 99.475]
# self.interpolation=Image.BICUBIC
self.interpolation=Image.BILINEAR
self.pred_cls_queue=(np.ones(self.pred_cls_queue_size)*10).tolist()
self.clf_selected_queue = np.zeros(self.n_classes_clf, )
self.det_selected_queue = np.zeros(self.n_classes_det, )
self.myqueue_det = Queue(self.det_queue_size, n_classes=self.n_classes_det)
self.myqueue_clf = Queue(self.clf_queue_size, n_classes=self.n_classes_clf)
self.num_frame = 0
self.clip = []
self.org_frms=[]
self.detector=detector
self.classifier=classifier
if not self.no_cuda:
self.detector,self.classifier=self.detector.cuda(),self.classifier.cuda()
self.detector.eval()
self.classifier.eval()
self.infer_extract_roi=InferenceExtractRoi(self.no_cuda)
self.spatial_transform = Compose([
FinalSize(interpolation=self.interpolation),
ToTensor(1), Normalize(self.mean, [1, 1, 1])
])
self.spatial_transform.randomize_parameters()
self.rotate_code=rotate_code
self.key_to_audio=key_to_audio
self.key_to_file=key_to_file
self.final_prediction=10
self.prev_prediction=10
self.count_0=0
self.tmp_inputs2=0
self.prev_best1=10
self.top2_diff_avg=[]
self.pred_cls=[]
self.outputs_clf=0 #### temp
self.tmp_count=0
def __call__(self,frame):
self.tmp_count+=1
t1 = time.time()
if self.rotate_code is not None:
frame=cv2.rotate(frame,self.rotate_code)
if self.num_frame == 0:
cur_frame=frame#cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
for i in range(16):
self.org_frms.append(cur_frame)
self.org_frms.pop(0)
_frame=frame#cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
self.org_frms.append(_frame)
x1,y1,x2,y2=self.infer_extract_roi(self.org_frms[0])
# st=time.time()
self.clip = [self.spatial_transform(img[y1:y2,x1:x2].copy()) for img in self.org_frms]
# print('time taken by transformation',time.time()-st)
im_dim = self.clip[0].size()[-2:]
try:
test_data = torch.cat(self.clip, 0).view((self.sample_duration, -1) + im_dim).permute(1, 0, 2, 3)
except Exception as e:
pdb.set_trace()
raise e
inputs = torch.cat([test_data],0).view(1,3,self.sample_duration,112,112)
self.num_frame += 1
with torch.no_grad():
inputs = Variable(inputs)
inputs_det = inputs[:, [2,1,0], -self.sample_duration_det:, :, :] ###
inputs_det=inputs_det.cpu()
outputs_det = self.detector(inputs_det)
outputs_det = F.softmax(outputs_det, dim=1)
outputs_det = outputs_det.cpu().numpy()[0].reshape(-1, )
# enqueue the probabilities to the detector queue
self.myqueue_det.enqueue(outputs_det.tolist())
self.myqueue_det.dequeue() ####
if self.det_strategy == 'raw':
self.det_selected_queue = outputs_det
elif self.det_strategy == 'median':
self.det_selected_queue = self.myqueue_det.median
elif self.det_strategy == 'ma':
self.det_selected_queue = self.myqueue_det.ma
elif self.det_strategy == 'ewma':
self.det_selected_queue = self.myqueue_det.ewma
prediction_det = np.argmax(self.det_selected_queue)
prob_det = self.det_selected_queue[prediction_det]
#print(self.tmp_count,'\n',outputs_det,'\t',outputs_det.argmax())
# print(self.tmp_count,'\n',self.det_selected_queue,'\t',prediction_det)
if prediction_det==0:
self.count_0+=1
else:
self.count_0=0
if self.count_0>=50:
prediction_det=0
else:
prediction_det=1
# print('final_prediction_det:',prediction_det)
#### State of the detector is checked here as detector act as a switch for the classifier
if prediction_det==1: ####
inputs_clf = inputs[:, :, :, :, :]
inputs_clf = torch.Tensor(inputs_clf.numpy()[:,:,::1,:,:])
# st=time.time()
outputs_clf = self.classifier(inputs_clf)
# print('actual time by clf',time.time()-st)
#self.outputs_clf=outputs_clf
outputs_clf = F.softmax(outputs_clf.data, dim=1)
# s=time.time()
outputs_clf=outputs_clf.detach().cpu()
# print('on cpu',time.time()-s)
outputs_clf = outputs_clf.numpy()[0].reshape(-1, )
# print('cpu conversion',time.time()-s)
# Push the probabilities to queue
#print(outputs_clf.shape,outpuu)
self.myqueue_clf.enqueue(outputs_clf.tolist())
self.myqueue_clf.dequeue() #####
#passive_count = 0
#best2,best1=outputs_clf.argsort()[-2:][::1]
# top2_diff.append(float(outputs_clf[best1]-outputs_clf[best2]))
# preds.append(outputs_clf)
# best1_lst.append(outputs_clf[best1])
# pred_cls.append(best1)
#tmp=outputs_clf.argmax()
# print('\n',k,'class:',best1,'\tbest1:',outputs_clf[best1],'\tdiff: ',outputs_clf[best1]-outputs_clf[best2])
if self.clf_strategy == 'raw':
self.clf_selected_queue = outputs_clf
elif self.clf_strategy == 'median':
self.clf_selected_queue = self.myqueue_clf.median
elif self.clf_strategy == 'ma':
self.clf_selected_queue = self.myqueue_clf.ma
elif self.clf_strategy == 'ewma':
self.clf_selected_queue = self.myqueue_clf.ewma
best2,best1=self.clf_selected_queue.argsort()[-2:][::1]
top2_diff=float(self.clf_selected_queue[best1]-self.clf_selected_queue[best2])
# print('best1:',best1,'\ttop2_diff:',top2_diff)
self.top2_diff_avg.append(top2_diff)
self.pred_cls.append(best1)
# self.prev_best1=best1
# print('whole clafication part',time.time()-st)
st=time.time()
if top2_diff>self.top2_diff_threshold:
# print('prediction class: ',best1)
self.pred_cls_queue.insert(0,best1)
# self.prev_best1=best1
else:
# print('prediction class: ',10)
self.pred_cls_queue.insert(0,10)
self.pred_cls_queue.pop()
self.post_processing(best1)
elapsedTime = time.time() - t1
fps = "(Playback) {:.1f} FPS".format(1/elapsedTime)
# print(fps,'\nspf',elapsedTime) ####
# print()
# cv2.putText(frame, fps, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA)
return self.final_prediction
def post_processing(self,best1):
count=1
for i in range(self.pred_cls_queue_size-1):
if self.pred_cls_queue[i]!=self.pred_cls_queue[i+1]:
break
count+=1
if count>=self.freq_threshold:
if self.pred_cls_queue[0]==6 and False:
if count>=self._6_freq_threshold:
# print('prediction class: ',self.pred_cls_queue[0])
self.final_prediction=self.pred_cls_queue[0]
if self.pred_cls_queue[0] not in [10,self.prev_prediction]:
self.play(self.pred_cls_queue[0])
self.prev_prediction=self.pred_cls_queue[0]
else:
# print('prediction class: ',10)
self.final_prediction=10
else:
# print('prediction class: ',self.pred_cls_queue[0])
self.final_prediction=self.pred_cls_queue[0]
if self.pred_cls_queue[0] not in [10,self.prev_prediction]:
self.play(self.pred_cls_queue[0])
self.prev_prediction=self.pred_cls_queue[0]
if self.pred_cls_queue[0]==10 and count>=6:
self.prev_prediction=10
else:
# print('prediction class: ',10)
self.final_prediction=10
def play(self,gesture):
#display(self.key_to_audio[gesture])#,display_id='0')
playsound(self.key_to_file[gesture])
class VideoStream:
def __init__(self, path=""):
"""
Constructor that returns a video camera input.
"""
if path == "":
self.norm_video = cv2.VideoCapture(0)
self.real_time = True
else:
self.norm_video = cv2.VideoCapture(path)
self.process_video = cv2.VideoCapture(path)
self.real_time = False
self.is_norm_first_time = True
self.is_process_first_time = True
self.prev_norm_frame = 0
self.prev_process_frame = 0
self.queue = []
self.font = cv2.FONT_HERSHEY_SIMPLEX
if not self.real_time:
self.rotate_code=check_rotation(path)
else:
self.rotate_code=None
#print(self.rotate_code)
self.pred=Prediction(None)
def __del__(self):
"""
Class destructor.
"""
if self.real_time:
self.norm_video.release()
else:
self.norm_video.release()
self.process_video.release()
def get_frame_col(self):
"""
Camera input for processing.
Returns a color image.
"""
success, frame = self.norm_video.read()
if self.rotate_code is not None:
frame=cv2.rotate(frame,self.rotate_code)
if self.real_time:
self.queue.append(frame)
# print('in real-time:',success)
time.sleep(.030)
if success:
frame = cv2.resize(frame, (640, 480))
ret, frame = cv2.imencode('.jpg', frame)
self.prev_norm_frame = frame
return frame.tobytes()
else:
return self.prev_norm_frame.tobytes()
def gesture_recog(self):
if not self.real_time:
success, frame = self.process_video.read()
if self.rotate_code is not None:
frame=cv2.rotate(frame,self.rotate_code)
elif len(self.queue)==0:
success, frame = self.norm_video.read()
if self.rotate_code is not None :
frame=cv2.rotate(frame,self.rotate_code)
else:
if len(self.queue):
success=True
frame=self.queue.pop(0)
else:
success=False
# print('in gesture recog:',success)
if success:
gesture=self.pred(frame)
# print('inside gesture recog',gesture)
frame=cv2.resize(frame, (640, 480))
if gesture!=10:
cv2.putText(frame, str(gesture), (640-120,120),
self.font, 0.006*640, (255, 180, 10), 8, cv2.LINE_AA)
ret, jpeg = cv2.imencode('.jpg', frame)
self.prev_process_frame = jpeg
return jpeg.tobytes()
else:
return self.prev_process_frame.tobytes()
app = Flask(__name__)
#run_with_ngrok(app)
stream = VideoStream()
# Home Page
@app.route('/')
def homepage():
global stream
stream.norm_video.release()
if not stream.real_time:
stream.process_video.release()
return render_template('homepage.html')
# Real_time Recognition Page
@app.route('/real_time', methods=['POST'])
def real_time():
global stream
stream = VideoStream(path="")
return render_template('real-time.html')
# Video_based Recognition Page
@app.route('/video_based', methods=['POST'])
def video_based():
global stream
passed_path = request.form['video_path']
is_file=os.path.isfile(passed_path)
if is_file:
stream = VideoStream(path=passed_path)
return render_template('video-based.html')
else:
return redirect(url_for("homepage"))
# Video_feed Generator Function
def gen(feed_type):
global stream, app
while True:
if feed_type == 'normal_video':
frame = stream.get_frame_col()
else:
frame = stream.gesture_recog()#detect_faces()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
# Video_feed URL
@app.route('/video_feed/<string:video>')
def video_feed(video):
return Response(gen(video),
mimetype='multipart/x-mixed-replace; boundary=frame')
def shutdown_server():
func = request.environ.get('werkzeug.server.shutdown')
if func is None:
raise RuntimeError('Not running with the Werkzeug Server')
func()
if __name__ == '__main__':
app.run()