-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathscorer.py
153 lines (121 loc) · 4.51 KB
/
scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/local/env python
"""
Scorer for the Fake News Challenge
- @bgalbraith
Submission is a CSV with the following fields: Headline, Body ID, Stance
where Stance is in {agree, disagree, discuss, unrelated}
Scoring is as follows:
+0.25 for each correct unrelated
+0.25 for each correct related (label is any of agree, disagree, discuss)
+0.75 for each correct agree, disagree, discuss
"""
from __future__ import division
import csv
import sys
FIELDNAMES = ['Headline', 'Body ID', 'Stance']
LABELS = ['agree', 'disagree', 'discuss', 'unrelated']
RELATED = LABELS[0:3]
USAGE = """
FakeNewsChallenge FNC-1 scorer - version 1.0
Usage: python scorer.py gold_labels test_labels
gold_labels - CSV file with reference GOLD stance labels
test_labels - CSV file with predicted stance labels
The scorer will provide three scores: MAX, NULL, and TEST
MAX - the best possible score (100% accuracy)
NULL - score as if all predicted stances were unrelated
TEST - score based on the provided predictions
"""
ERROR_MISMATCH = """
ERROR: Entry mismatch at line {}
[expected] Headline: {} // Body ID: {}
[got] Headline: {} // Body ID: {}
"""
SCORE_REPORT = """
MAX - the best possible score (100% accuracy)
NULL - score as if all predicted stances were unrelated
TEST - score based on the provided predictions
|| MAX || NULL || TEST ||\n||{:^11}||{:^11}||{:^11}||
"""
class FNCException(Exception):
pass
def score_submission(gold_labels, test_labels):
score = 0.0
cm = [[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]
for i, (g, t) in enumerate(zip(gold_labels, test_labels)):
if g['Headline'] != t['Headline'] or g['Body ID'] != t['Body ID']:
error = ERROR_MISMATCH.format(i+2,
g['Headline'], g['Body ID'],
t['Headline'], t['Body ID'])
raise FNCException(error)
else:
g_stance, t_stance = g['Stance'], t['Stance']
if g_stance == t_stance:
score += 0.25
if g_stance != 'unrelated':
score += 0.50
if g_stance in RELATED and t_stance in RELATED:
score += 0.25
cm[LABELS.index(g_stance)][LABELS.index(t_stance)] += 1
return score, cm
def score_defaults(gold_labels):
"""
Compute the "all false" baseline (all labels as unrelated) and the max
possible score
:param gold_labels: list containing the true labels
:return: (null_score, best_score)
"""
unrelated = [g for g in gold_labels if g['Stance'] == 'unrelated']
null_score = 0.25 * len(unrelated)
max_score = null_score + (len(gold_labels) - len(unrelated))
return null_score, max_score
def load_dataset(filename):
data = None
try:
with open(filename) as fh:
reader = csv.DictReader(fh)
if reader.fieldnames != FIELDNAMES:
error = 'ERROR: Incorrect headers in: {}'.format(filename)
raise FNCException(error)
else:
data = list(reader)
if data is None:
error = 'ERROR: No data found in: {}'.format(filename)
raise FNCException(error)
except FileNotFoundError:
error = "ERROR: Could not find file: {}".format(filename)
raise FNCException(error)
return data
def print_confusion_matrix(cm):
lines = ['CONFUSION MATRIX:']
header = "|{:^11}|{:^11}|{:^11}|{:^11}|{:^11}|".format('', *LABELS)
line_len = len(header)
lines.append("-"*line_len)
lines.append(header)
lines.append("-"*line_len)
hit = 0
total = 0
for i, row in enumerate(cm):
hit += row[i]
total += sum(row)
lines.append("|{:^11}|{:^11}|{:^11}|{:^11}|{:^11}|".format(LABELS[i],
*row))
lines.append("-"*line_len)
lines.append("ACCURACY: {:.3f}".format(hit / total))
print('\n'.join(lines))
if __name__ == '__main__':
if len(sys.argv) != 3:
print(USAGE)
sys.exit(0)
_, gold_filename, test_filename = sys.argv
try:
gold_labels = load_dataset(gold_filename)
test_labels = load_dataset(test_filename)
test_score, cm = score_submission(gold_labels, test_labels)
null_score, max_score = score_defaults(gold_labels)
print_confusion_matrix(cm)
print(SCORE_REPORT.format(max_score, null_score, test_score))
except FNCException as e:
print(e)