This repository has been archived by the owner on Feb 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathbsi.go
284 lines (256 loc) · 6.89 KB
/
bsi.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright 2022 Molecula Corp. (DBA FeatureBase).
// SPDX-License-Identifier: Apache-2.0
package pilosa
import (
"math/bits"
"github.com/featurebasedb/featurebase/v3/roaring"
)
// BSIData contains BSI-structured data.
type BSIData []*Row
// PivotDescending loops over nonzero BSI values in descending order.
// For each value, the provided function is called with the value and a slice of the associated columns.
// If limit or offset are not-nil, they will be applied.
// Applying a limit or offset may modify the pointed-to value.
func (bsi BSIData) PivotDescending(filter *Row, branch uint64, limit, offset *uint64, fn func(uint64, ...uint64)) {
// This "pivot" algorithm works by treating the BSI data as a tree.
// Each branch of this tree corresponds to a power-of-2-sized range of BSI values.
// Each range is subdivided into 2 ranges of half size, which form lower branches.
// Eventually, a range of width 1 cannot be subdivided and forms a leaf.
// At each branch and leaf, there is a bitmap of all columns within the corresponding range.
// The lower branches are formed as a difference or intersect of the upper branch's bitmap with the BSI bit that subdivides the range.
// This function uses a depth-first search over this virtual tree.
switch {
case !filter.Any():
// There are no remaining data.
case offset != nil && *offset >= filter.Count():
// Skip this entire branch.
*offset -= filter.Count()
case limit != nil && *limit == 0:
// The limit has been reached.
// No more data is necessary.
case len(bsi) == 0:
// This is a leaf node.
cols := filter.Columns()
if offset != nil {
cols = cols[*offset:]
*offset = 0
}
if limit != nil {
if *limit < uint64(len(cols)) {
cols = cols[:*limit]
}
*limit -= uint64(len(cols))
}
fn(branch, cols...)
default:
// Pivot over the highest bit.
upperBranch, lowerBranch := branch|(1<<uint(len(bsi)-1)), branch
splitBit := bsi[len(bsi)-1]
lowerBits := bsi[:len(bsi)-1]
lowerBits.PivotDescending(filter.Intersect(splitBit), upperBranch, limit, offset, fn)
lowerBits.PivotDescending(filter.Difference(splitBit), lowerBranch, limit, offset, fn)
}
}
/*
// distribution generates a BSI histogram for the input.
// TODO: I forgot what I was going to use this for.
// Could probbably use this for:
// - quartile queries
// - TopN on int
func (bsi bsiData) distribution(filter *Row) bsiData {
var dist bsiData
bsi.PivotDescending(filter, 0, nil, nil, func(count uint64, values ...uint64) {
dist.insert(count, uint64(len(values)))
})
return dist
}
*/
var placeholderBitmap = roaring.NewBitmap()
// AddBSI adds two BSI bitmaps together.
// It does not handle sign and has no concept of overflow.
func AddBSI(x, y BSIData) BSIData {
// Accumulate row segments.
segments := make([][]RowSegment, len(x)+len(y))
xsegs, ysegs := segments[:len(x)], segments[len(x):]
for i, r := range x {
xsegs[i] = r.Segments
}
for i, r := range y {
ysegs[i] = r.Segments
}
var dst BSIData
var xbitmaps, ybitmaps []*roaring.Bitmap
for {
// Find the next shard.
next := ^uint64(0)
for _, s := range segments {
if len(s) == 0 {
continue
}
shard := s[0].shard
if shard < next {
next = shard
}
}
if next == ^uint64(0) {
// There are no remaining shards.
break
}
// Accumulate bitmaps for this shard.
xbitmaps, ybitmaps = xbitmaps[:0], ybitmaps[:0]
for i, segs := range xsegs {
if len(segs) == 0 || segs[0].shard != next {
continue
}
xsegs[i] = segs[1:]
bm := segs[0].data
if !bm.Any() {
continue
}
for len(xbitmaps) < i {
xbitmaps = append(xbitmaps, placeholderBitmap)
}
xbitmaps = append(xbitmaps, bm)
}
for i, segs := range ysegs {
if len(segs) == 0 || segs[0].shard != next {
continue
}
ysegs[i] = segs[1:]
bm := segs[0].data
if !bm.Any() {
continue
}
for len(ybitmaps) < i {
ybitmaps = append(ybitmaps, placeholderBitmap)
}
ybitmaps = append(ybitmaps, bm)
}
// Add the shard values together.
var out []*roaring.Bitmap
switch {
case len(xbitmaps) == 0:
// There are no values in x.
out = ybitmaps
case len(ybitmaps) == 0:
// There are no values in y.
out = xbitmaps
default:
out = roaring.Add(xbitmaps, ybitmaps)
}
// Convert the bitmaps to output segments.
for i, b := range out {
if !b.Any() {
continue
}
for len(dst) <= i {
dst = append(dst, NewRow())
}
dst[i].Segments = append(dst[i].Segments, RowSegment{
shard: next,
writable: true,
data: b,
n: b.Count(),
})
}
}
return dst
}
// rowBuilder builds a row quickly from individual values.
// It is optimized for the case in which values are generated sequentially.
type rowBuilder struct {
bm *roaring.Bitmap
mask *[1024]uint64
array []uint16
key uint64
n int32
}
// flushKey flushes the data at the current key to the bitmap.
func (b *rowBuilder) flushKey() {
var c *roaring.Container
switch {
case b.mask != nil:
c = roaring.NewContainerBitmapN(b.mask[:], b.n)
b.mask = nil
case len(b.array) > 0:
c = roaring.NewContainerArrayCopy(b.array)
b.array = b.array[:0]
default:
return
}
if b.bm == nil {
b.bm = roaring.NewBitmap()
}
if old := b.bm.Containers.Get(b.key); old != nil {
c = roaring.Union(c, old)
}
b.bm.Containers.Put(b.key, c)
}
// Add a value to the bitmap.
// Values must be added sequentially.
func (b *rowBuilder) Add(v uint64) {
vkey := v / (1 << 16)
if b.key != vkey {
// This is a new key, so flush the old one.
b.flushKey()
b.key = vkey
}
if b.mask != nil {
// Add to the mask.
b.n += int32(1 &^ (b.mask[uint16(v)/64] >> (v % 64)))
b.mask[uint16(v)/64] |= 1 << (v % 64)
return
}
// Add to an array.
b.array = append(b.array, uint16(v))
if len(b.array) >= roaring.ArrayMaxSize {
// The array is too big.
// Convert it to a bitmask.
m := [1024]uint64{}
for _, v := range b.array {
m[v/64] |= 1 << (v % 64)
}
b.n = int32(len(b.array))
b.array = b.array[:0]
b.mask = &m
}
}
// Build a Row from stored data.
// This resets the builder.
func (b *rowBuilder) Build() *Row {
// Flush the active key to the bitmap.
b.flushKey()
// Remove the bitmap and convert it to a Row.
bm := b.bm
b.bm = nil
if bm == nil {
return NewRow()
}
return NewRowFromBitmap(bm)
}
// bsiBuilder assembles BSI data.
// It is optimized for the case in which values are generated sequentially.
type bsiBuilder []rowBuilder
// Insert a value into the BSI data.
// Columns must be inserted sequentially, and duplicates are not allowed.
func (b *bsiBuilder) Insert(col, val uint64) {
for val != 0 {
i := bits.TrailingZeros64(val)
val &^= 1 << i
for len(*b) <= i {
*b = append(*b, rowBuilder{})
}
(*b)[i].Add(col)
}
}
// Build BSI data.
// This resets the builder.
func (b *bsiBuilder) Build() BSIData {
builders := *b
*b = builders[:0]
rows := make(BSIData, len(builders))
for i := range builders {
rows[i] = builders[i].Build()
}
return rows
}