-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathproject.py
316 lines (279 loc) · 13.4 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# IMPORTING LIBRARIES
#importing imutils and dlib for determination of face landmarks
from imutils import face_utils
import dlib
#importing cv2(OpenCV) for computer vision
import cv2
#importing pyautogui for integrating the code with mouse
import pyautogui as pag
#importing numpy to perform array operations
import numpy as np
#The library is basically used for plotting the difference in EAR for different cases, while caliberating
from matplotlib import pyplot as plt
#importing time for caliberating the code for a particular time
import time
#scipy used here for smoothening the matplotlib curves
from scipy.ndimage import gaussian_filter
# INITIALIZATION OF VARIOUS FUNCTIONS USED IN THE PROGRAM
# The function is used for calculation of MAR for the mouth
def MAR(point1,point2,point3,point4,point5,point6,point7,point8):
mar = (dst(point1,point2) + dst(point3,point4) + dst(point5,point6))/(3.0*dst(point7,point8))
return mar
#The function is used for calculation of EAR for an eye
def EAR(point1,point2,point3,point4,point5,point6):
ear = (dst(point2,point6) + dst(point3,point5))/(2*dst(point1,point4))*1.0
return ear
# The function is used for calculating the distance between the two points. This is primarily used for calculating EAR
def dst(point1, point2):
distance = np.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)
return distance
#The function is used for calculating the angle between the line made by the nose tip and centre of reference circle and the horizontal line passing through the centre of the reference circle
def angle(point1):
slope12 = (point1[1] - 250)/(point1[0] - 250)*1.0
agle = 1.0*np.arctan(slope12)
return agle
def nothing(x):
pass
# START OF THE MAIN PROGRAM PART I
#Initialization of numpy arrays for storing EAR differences as well as the time (in seconds) in which it was recorded
lclick = np.array([])
rclick = np.array([])
scroll = np.array([])
eyeopen = np.array([])
lclickarea = np.array([])
rclickarea = np.array([])
t1 = np.array([])
t2 = np.array([])
t3 = np.array([])
t4 = np.array([])
pag.PAUSE = 0 # Setting the pyautogui reference time to 0.
#importing the .dat file into the variable p, which will be used for the calculation of facial landmarks
p = "shape_predictor.dat"
detector = dlib.get_frontal_face_detector() # Returns a default face detector object
predictor = dlib.shape_predictor(p) # Outputs a set of location points that define a pose of the object. (Here, pose of the human face)
(lstart,lend) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(rstart,rend) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(mstart,mend) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
#The first snippet of code is basically for calibration of the EARdifference for left as well as the right eye
cap = cv2.VideoCapture(0)
#font used for putting text on the screen(will be used in sometime)
font = cv2.FONT_HERSHEY_SIMPLEX
#Standard reference of time is UNIX time
currenttime = time.time()#captures the current UNIX time
while(time.time() - currenttime <= 25): #The calibration code will run for 23 seconds.
ret,image = cap.read()
blackimage = np.zeros((480,640,3),dtype = np.uint8)
image = cv2.flip(image,1)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit = 2.0, tileGridSize = (8,8))
gray = clahe.apply(gray)
rects = detector(gray,0)
for (i,rect) in enumerate(rects): # Loop used for the prediction of facial landmarks
shape = predictor(gray,rect)
shape = face_utils.shape_to_np(shape)
lefteye = EAR(shape[36],shape[37],shape[38],shape[39],shape[40],shape[41])
righteye = EAR(shape[42],shape[43],shape[44],shape[45],shape[46],shape[47])
mar = MAR(shape[50],shape[58],shape[51],shape[57],shape[52],shape[56],shape[48],shape[54])
EARdiff = (lefteye - righteye)*100
leftEye = shape[lstart:lend]
rightEye = shape[rstart:rend]
mouthroi = shape[mstart:mend]
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
mouthHull = cv2.convexHull(mouthroi)
learmar = lefteye/mar
rearmar = righteye/mar
cv2.drawContours(image,[mouthroi],-1,(0,255,0),1)
cv2.drawContours(image,[leftEyeHull],-1,(0,255,0),1)
cv2.drawContours(image,[rightEyeHull],-1,(0,255,0),1)
marea = cv2.contourArea(mouthHull)
larea = cv2.contourArea(leftEyeHull)
rarea = cv2.contourArea(rightEyeHull)
LAR = larea/marea
RAR = rarea/marea
print(learmar,rearmar)
elapsedTime = time.time() - currenttime
if elapsedTime < 5.0: # recording the phase where both eyes are open
cv2.putText(blackimage,'Keep Both Eyes Open',(0,100), font, 1,(255,255,255),2,cv2.LINE_AA)
eyeopen = np.append(eyeopen,[EARdiff])
t1 = np.append(t1,[elapsedTime])
elif elapsedTime > 5.0 and elapsedTime < 10.0: # recording the phase when only left eye is closed
cv2.putText(blackimage,'Close Left Eye',(0,100), font, 1,(255,255,255),2,cv2.LINE_AA)
if elapsedTime > 7.0 and elapsedTime < 10.0:
lclick = np.append(lclick,[EARdiff])
lclickarea = np.append(lclickarea,[larea])
t2 = np.append(t2,[elapsedTime])
elif elapsedTime > 12.0 and elapsedTime < 17.0: # recording the phase for only right eye
cv2.putText(blackimage,'Open Left eye and close Right Eye',(0,100), font, 1,(255,255,255),2,cv2.LINE_AA)
if elapsedTime > 14.0 and elapsedTime < 17.0:
rclick = np.append(rclick,[EARdiff])
rclickarea = np.append(rclickarea,[rarea])
t3 = np.append(t3,[elapsedTime])
elif elapsedTime > 19.0 and elapsedTime < 24.0: # recording the phase for open mouth
cv2.putText(blackimage,'Open Your Mouth',(0,100),font,1,(255,255,255),2,cv2.LINE_AA)
if elapsedTime > 21.0 and elapsedTime < 24.0:
scroll = np.append(scroll,[mar])
t4 = np.append(t4,[elapsedTime])
else: # no recording done in this phase. It is just a small lag
pass
for (x,y) in shape: # prints facial landmarks on the face
cv2.circle(image,(x,y),2,(0,255,0),-1)
res = np.vstack((image,blackimage))
cv2.imshow('Calibration',res) # Display of image as well as the prompt window
if cv2.waitKey(5) & 0xff == 27:
break
# PLOTTING OF THE RECORDED DATA
# Plotting the recorded points when both eyes are open
plt.subplot(2,2,1)
eyeopen_smooth = gaussian_filter(eyeopen,sigma = 5)
plt.title('Both Eyes Open')
plt.plot(t1,eyeopen_smooth)
# Plotting the recorded points when left eye is closed
plt.subplot(2,2,2)
lclick_smooth = gaussian_filter(lclick,sigma = 5)
plt.title('Left click')
plt.plot(t2,lclick_smooth)
# Plotting the recorded points when right eye is closed
plt.subplot(2,2,3)
rclick_smooth = gaussian_filter(rclick,sigma = 5)
plt.title('Right click')
plt.plot(t3,rclick_smooth)
# Plotting the recorded points when the mouth is opened
plt.subplot(2,2,4)
scroll_smooth = gaussian_filter(scroll,sigma = 5)
plt.title('Scroll Mode')
plt.plot(t4,scroll_smooth)
plt.show() # Display of graph. Press any key to exit the graph
cap.release()
cv2.destroyAllWindows()
# START OF THE MAIN PROGRAM PART II
# The second snippet of code consists of the main code, where all the cursor controlling using face gestures will take place
cap = cv2.VideoCapture(0)
MARlist = np.array([]) # Initialization of a MAR list which will be resued after every 30 iterations
scroll_status = 0 # Checks the scroll status: 1:ON 0:OFF
eyeopen = np.sort(eyeopen)
# Sorting of the numpy arrays formed for calculation of median
lclick = np.sort(lclick)
rclick = np.sort(rclick)
scroll = np.sort(scroll)
lclickarea = np.sort(lclickarea)
rclickarea = np.sort(rclickarea)
openeyes = np.median(eyeopen) # Calculates mean of the recorded values for the case when both eyes are opened.
leftclick = np.median(lclick) - 1 # Calculates mean of the recorded values for left click. Subtracting a constant to make it a bit more flexible
rightclick = np.median(rclick) + 1 # Calculates mean of the recorded values for right click. Adding a constant to make it a bit more flexible
scrolling = np.median(scroll)
leftclickarea = np.median(lclickarea)
rightclickarea = np.median(rclickarea)
print("Standard Deviation = "+str(np.std(lclick)))
print("Standard Deviation = "+str(np.std(rclick)))
print("Left click value = "+str(leftclick)) # Prints the result
print("Right click value = "+str(rightclick)) # Prints the result
ll = 0
while(True):
try:
frameTimeInitial = time.time()
blackimage = np.zeros((480,640,3),dtype = np.uint8)
# Getting out image by webcam
_, image = cap.read()
image=cv2.flip(image,1)
# Converting the image to gray scale image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit = 2.0, tileGridSize = (8,8))
gray = clahe.apply(gray)
cv2.circle(image,(250,250),50,(0,0,255),2)
# Creation of another frame in order to perform some secondary operations on it. It will help in preventing the mouse from being too sensitive
_,image2 = cap.read()
image2 = cv2.flip(image2,1)
image2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
# Get faces into webcam's image
rects = detector(gray, 0)
# For each detected face, find the landmark.
for (i, rect) in enumerate(rects):
# Make the prediction and transfom it to numpy array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# Making of Region of Interests for left as well as right eye, followed by filtering relevent information from it.
# Counting number of non zero pixels in the thresholded images
[h,k] = shape[33]
lefteye = EAR(shape[36],shape[37],shape[38],shape[39],shape[40],shape[41]) # Calculation of the EAR for left eye
righteye = EAR(shape[42],shape[43],shape[44],shape[45],shape[46],shape[47]) # Calculation of the EAR for right eye
EARdiff = (lefteye - righteye)*100 # Calculating the difference in EAR in percentage
mar = MAR(shape[50],shape[58],shape[51],shape[57],shape[52],shape[56],shape[48],shape[54]) # Calculation of the MAR of mouth
cv2.line(image,(250,250),(h,k),(0,0,0),1) # Draws a line between the tip of the nose and the centre of reference circle
# Controls the move of mouse according to the position of the found nose.
# Detection of eye with facial landmarks and then forming a convex hull on it.
leftEye = shape[lstart:lend]
rightEye = shape[rstart:rend]
mouthroi = shape[mstart:mend]
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
mouthHull = cv2.convexHull(mouthroi)
cv2.drawContours(image,[mouthroi],-1,(0,255,0),1)
cv2.drawContours(image,[leftEyeHull],-1,(0,255,0),1)
cv2.drawContours(image,[rightEyeHull],-1,(0,255,0),1)
larea = cv2.contourArea(leftEyeHull)
rarea = cv2.contourArea(rightEyeHull)
marea = cv2.contourArea(mouthHull)
if EARdiff < leftclick and larea < leftclickarea: # Left click will be initiated if the EARdiff is less than the leftclick calculated during calibration
pag.click(button = 'left')
cv2.putText(blackimage,"Left Click",(0,300),font,1,(255,255,255),2,cv2.LINE_AA)
lclick = np.array([])
elif EARdiff > rightclick and rarea < rightclickarea: # Right click will be initiated if the EARdiff is more than the rightclick calculated during calibration
pag.click(button = 'right')
cv2.putText(blackimage,"Right Click",(0,300),font,1,(255,255,255),2,cv2.LINE_AA)
lclick = np.array([])
# Draw on our image, all the finded cordinate points (x,y)
for (x, y) in shape:
cv2.circle(image, (x, y), 2, (0, 255, 0), -1)
MARlist = np.append(MARlist,[mar]) # Appending the list at every iteration
if len(MARlist) == 30: # till it reaches a size of 30 elements
mar_avg = np.mean(MARlist)
MARlist = np.array([]) # Resetting the MAR list
if int(mar_avg*100) > int(scrolling*100):
if scroll_status == 0:
scroll_status = 1
else:
scroll_status = 0
# Sets the condition for scrolling mode
if scroll_status == 0:
if((h-250)**2 + (k-250)**2 - 50**2 > 0):
a = angle(shape[33]) # Calculates the angle
if h > 250: # The below conditions set the conditions for the mouse to move and that too in any direction we desire it to move to.
time.sleep(0.03)
pag.moveTo(pag.position()[0]+(10*np.cos(1.0*a)),pag.position()[1]+(10*np.sin(1.0*a)),duration = 0.01)
cv2.putText(blackimage,"Moving",(0,250),font,1,(255,255,255),2,cv2.LINE_AA)
else:
time.sleep(0.03)
pag.moveTo(pag.position()[0]-(10*np.cos(1.0*a)),pag.position()[1]-(10*np.sin(1.0*a)),duration = 0.01)
cv2.putText(blackimage,"Moving",(0,250),font,1,(255,255,255),2,cv2.LINE_AA)
else: #Enabling scroll status
cv2.putText(blackimage,'Scroll mode ON',(0,100),font,1,(255,255,255),2,cv2.LINE_AA)
if k > 300:
cv2.putText(blackimage,"Scrolling Down",(0,300),font,1,(255,255,255),2,cv2.LINE_AA)
pag.scroll(-1)
elif k < 200:
cv2.putText(blackimage,"Scrolling Up",(0,300),font,1,(255,255,255),2,cv2.LINE_AA)
pag.scroll(1)
else:
pass
cv2.circle(image,(h,k),2,(255,0,0),-1)
frameTimeFinal = time.time()
cv2.putText(blackimage,"FPS: "+str(int(1/(frameTimeFinal - frameTimeInitial))),(0,150),font,1,(255,255,255),2,cv2.LINE_AA)
cv2.putText(blackimage,"Press Esc to abort",(0,200),font,1,(255,255,255),2,cv2.LINE_AA)
res = np.vstack((image,blackimage))
cv2.imshow('Cursor Control',res)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
except: # Just display the frames in case of any error
blackimage = np.zeros((480,640,3),dtype = np.uint8)
cv2.putText(blackimage,"Landmarks Lost.\nCheck the lighting or reposition your face",(0,100),font,1,(255,255,255),2,cv2.LINE_AA)
_,image = cap.read()
image = cv2.flip(image,1)
res = np.vstack((image,blackimage))
cv2.imshow('Cursor Control',res)
k = cv2.waitKey(5) & 0xff
if k == 27:
break
cv2.destroyAllWindows()
cap.release()