-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCLRFedu.m
171 lines (153 loc) · 5.27 KB
/
CLRFedu.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
function [EMout,augTrainData,augTestData,trainResults,testResults] = ...
CLRFedu(Data,covType,depCovType,clampedSetTrain,clampedSetTest,options)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% inputs: Data is the structure containing the following
% samples => binary training samples. The entries should be 1/2
% covariates & depCovariates => node and edge covariates in the
% vertex dependency model
% covType and depCovType => array indicating whether the covariates
% are node specific (1), time varying but node constant (2) or both
% simultaneously (3).
% clampedSet => array indicating the nodes that prediction is
% conditioned on. If we want to condition on no nodes we can use an
% empty matrix.
% options => structure array giving the input options for structure
% learning
%
%
% outputs:ParamsEM and sParams => node and edge parameters of the vertex
% model (saved in EMout)
% Ecll => expected complete data log likelihood (saved in EMout)
% aug_covariates and aug_depCovariates are the augmented node and
% edge covariates of the vertex model extended to include the
% hidden variables
% adjmatT => learned structure
% testResults: structure containing the test results like vertex
% and edge prediction accuracy as well as co-occurrence statistics.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% load data :|
trainSamples = Data.trainSamples;
testSamples = Data.testSamples;
trainCovariates = Data.trainCovariates;
testCovariates = Data.testCovariates;
trainDepCovariates = Data.trainDepCovariates;
testDepCovariates = Data.testDepCovariates;
if nargin < 6
options.method = 'regCLRG';
options.diffBias = 0;
end
if ~isfield(options,'diffBias')
options.diffBias = 0;
end
if isfield(options,'thrsh')
if ~strcmp(options.method,'CLRG1')
error('threshold can only be input to CLRG1')
end
end
if ~isfield(options,'isBox')
options.isBox = 0;
end
if ~isfield(options,'isTest')
options.isTest = 1;
end
%% Structure Learning
[adjmatT,aug_covariates,aug_depCovariates,optionsEM] =...
learnStruct(...
trainSamples,...
trainCovariates,...
covType,...
trainDepCovariates,...
depCovType,...
options);
if options.isTest
[adjmatTtest,aug_covariatesTest,aug_depCovariatesTest,~] =...
learnStruct(...
testSamples,...
testCovariates,...
covType,...
testDepCovariates,...
depCovType,...
options);
else
adjmatTtest = [];
aug_covariatesTest = [];
aug_depCovariatesTest = [];
end
if options.diffBias
nSamples = size(trainSamples,2);
nTot = size(adjmatT,1);
nTotTest = size(adjmatTtest);
tmp = repmat(eye(nTot),[1,1,nSamples]);
tmpTest = repmat(eye(nTotTest),[1,1,nSamples]);
aug_covariates = [tmp,aug_covariates(:,2:end,:)];
aug_covariatesTest = [tmpTest,aug_covariatesTest(:,2:end,:)];
end
augTrainData.adjmatT = adjmatT;
augTrainData.aug_covariates = aug_covariates;
augTrainData.aug_depCovariates = aug_depCovariates;
if options.isTest
augTestData.adjmatT = adjmatTtest;
augTestData.aug_covariates = aug_covariatesTest;
augTestData.aug_depCovariates = aug_depCovariatesTest;
else
augTestData = [];
end
%% Parameter Estimation
optionsEM.stepSize = 1e-2;
[ParamsEM, dParams, ~, Ecll] = ...
paramsEst(...
trainSamples,...
adjmatT,...
aug_covariates,...
aug_depCovariates,...
optionsEM);
EMout.paramsEM = ParamsEM;
EMout.dParams = dParams;
EMout.Ecll = Ecll;
%% Testing
% VP/CP/CA/EA/EAca/EAcp
nSamples = size(trainSamples,2);
clampedCLRFtrain = zeros(length(adjmatT),nSamples);
clampedCLRFtrain(clampedSetTrain,:) = trainSamples(clampedSetTrain,:);
if options.isTest
clampedCLRFtest = zeros(length(adjmatTtest),nSamples);
clampedCLRFtest(clampedSetTest,:) = testSamples(clampedSetTest,:);
end
[trainResults.VP,trainResults.CP,trainResults.CA] = ...
condPredEdu(ParamsEM,dParams,adjmatT,aug_covariates,aug_depCovariates,trainSamples,clampedCLRFtrain,options.isBox);
if options.isTest
[testResults.VP,testResults.CP,testResults.CA] =...
condPredEdu(ParamsEM,dParams,adjmatTtest,aug_covariatesTest,aug_depCovariatesTest,testSamples,clampedCLRFtest,options.isBox);
else
testResults = [];
end
% Co-occurence
[~,~,~,~,co_ocTrain] = CLRFco_occur(ParamsEM,dParams,adjmatT,aug_covariates,aug_depCovariates,trainSamples);
if options.isTest
[~,~,~,~,co_ocTest] = CLRFco_occur(ParamsEM,dParams,adjmatTtest,aug_covariatesTest,aug_depCovariatesTest,testSamples);
else
co_ocTest = [];
end
nTrain = size(trainSamples,1);
trainResults.mean_CoOc = zeros(1,nSamples);
for t=1:nSamples
for i=1:nTrain
for j=1:i-1
trainResults.mean_CoOc(t) = trainResults.mean_CoOc(t) + co_ocTrain(i,j,t);
end
end
end
trainResults.mean_CoOc = trainResults.mean_CoOc/(nTrain*(nTrain-1)/2);
if options.isTest
nTest = size(testSamples,1);
testResults.mean_CoOc = zeros(1,nSamples);
for t=1:nSamples
for i=1:nTest
for j=1:i-1
testResults.mean_CoOc(t) = testResults.mean_CoOc(t) + co_ocTest(i,j,t);
end
end
end
testResults.mean_CoOc = testResults.mean_CoOc/(nTest*(nTest-1)/2);
end