forked from Megvii-BaseDetection/YOLOX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (130 loc) · 4.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import argparse
import random
import warnings
from loguru import logger
import torch
import torch.backends.cudnn as cudnn
from yolox.core import launch
from yolox.exp import Exp, check_exp_value, get_exp
from yolox.utils import configure_module, configure_nccl, configure_omp, get_num_devices
def make_parser():
parser = argparse.ArgumentParser("YOLOX train parser")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
# distributed
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--dist-url",
default=None,
type=str,
help="url used to set up distributed training",
)
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
parser.add_argument(
"-d", "--devices", default=None, type=int, help="device for training"
)
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="plz input your experiment description file",
)
parser.add_argument(
"--resume", default=False, action="store_true", help="resume training"
)
parser.add_argument("-c", "--ckpt", default=None, type=str, help="checkpoint file")
parser.add_argument(
"-e",
"--start_epoch",
default=None,
type=int,
help="resume training start epoch",
)
parser.add_argument(
"--num_machines", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision training.",
)
parser.add_argument(
"--cache",
type=str,
nargs="?",
const="ram",
help="Caching imgs to ram/disk for fast training.",
)
parser.add_argument(
"-o",
"--occupy",
dest="occupy",
default=False,
action="store_true",
help="occupy GPU memory first for training.",
)
parser.add_argument(
"-l",
"--logger",
type=str,
help="Logger to be used for metrics. \
Implemented loggers include `tensorboard`, `mlflow` and `wandb`.",
default="tensorboard"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser
@logger.catch
def main(exp: Exp, args):
if exp.seed is not None:
random.seed(exp.seed)
torch.manual_seed(exp.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed training. This will turn on the CUDNN deterministic setting, "
"which can slow down your training considerably! You may see unexpected behavior "
"when restarting from checkpoints."
)
# set environment variables for distributed training
configure_nccl()
configure_omp()
cudnn.benchmark = True
trainer = exp.get_trainer(args)
trainer.train()
if __name__ == "__main__":
configure_module()
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
exp.merge(args.opts)
check_exp_value(exp)
if not args.experiment_name:
args.experiment_name = exp.exp_name
num_gpu = get_num_devices() if args.devices is None else args.devices
assert num_gpu <= get_num_devices()
if args.cache is not None:
exp.dataset = exp.get_dataset(cache=True, cache_type=args.cache)
dist_url = "auto" if args.dist_url is None else args.dist_url
launch(
main,
num_gpu,
args.num_machines,
args.machine_rank,
backend=args.dist_backend,
dist_url=dist_url,
args=(exp, args),
)