-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperations.py
312 lines (247 loc) · 12.1 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from pdb import set_trace as bp
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from thop import profile
from thop.count_hooks import count_convNd
import sys
import os.path as osp
from easydict import EasyDict as edict
from quantize import QConv2d
from slimmable_ops import USBatchNorm2d
__all__ = ['ConvBlock', 'Skip', 'ConvNorm', 'OPS']
flops_lookup_table = {}
flops_file_name = "flops_lookup_table.npy"
if osp.isfile(flops_file_name):
flops_lookup_table = np.load(flops_file_name, allow_pickle=True).item()
Conv2d = QConv2d
BatchNorm2d = USBatchNorm2d
DWS_CHWISE_QUANT = True
custom_ops = {QConv2d: count_convNd}
class ChannelShuffle(nn.Module):
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert (
C % g == 0
), "Incompatible group size {} for input channel {}".format(g, C)
return (
x.view(N, g, int(C / g), H, W)
.permute(0, 2, 1, 3, 4)
.contiguous()
.view(N, C, H, W)
)
class ConvBlock(nn.Module):
'''
conv => norm => activation
use native Conv2d, not slimmable
'''
def __init__(self, C_in, C_out, layer_id, expansion=1, kernel_size=3, stride=1, padding=None, dilation=1, groups=1,
bias=False, num_bits_list=[0, ]):
super(ConvBlock, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.layer_id = layer_id
self.num_bits_list = num_bits_list
assert type(expansion) == int
self.expansion = expansion
self.kernel_size = kernel_size
assert stride in [1, 2]
self.stride = stride
if padding is None:
# assume h_out = h_in / s
self.padding = int(np.ceil((dilation * (kernel_size - 1) + 1 - stride) / 2.))
else:
self.padding = padding
self.dilation = dilation
assert type(groups) == int
self.groups = groups
self.bias = bias
if self.groups > 1:
self.shuffle = ChannelShuffle(self.groups)
self.conv1 = Conv2d(C_in, C_in * expansion, kernel_size=1, stride=1, padding=0, dilation=1, groups=self.groups,
bias=bias)
self.bn1 = BatchNorm2d(C_in * expansion, self.num_bits_list)
self.conv2 = Conv2d(C_in * expansion, C_in * expansion, kernel_size=self.kernel_size, stride=self.stride,
padding=self.padding, dilation=1, groups=C_in * expansion, bias=bias,
dws=True and DWS_CHWISE_QUANT)
self.bn2 = BatchNorm2d(C_in * expansion, self.num_bits_list)
self.conv3 = Conv2d(C_in * expansion, C_out, kernel_size=1, stride=1, padding=0, dilation=1, groups=self.groups,
bias=bias)
self.bn3 = BatchNorm2d(C_out, self.num_bits_list)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, num_bits=0):
identity = x
x = self.relu(self.bn1(self.conv1(x, num_bits), num_bits))
if self.groups > 1:
x = self.shuffle(x)
x = self.relu(self.bn2(self.conv2(x, num_bits), num_bits))
x = self.bn3(self.conv3(x, num_bits), num_bits)
if self.C_in == self.C_out and self.stride == 1:
x += identity
# x = self.relu(x)
return x
@staticmethod
def _flops(h, w, C_in, C_out, expansion=1, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, bias=False):
layer_id = 1
layer = ConvBlock(C_in, C_out, layer_id, expansion, kernel_size, stride, padding, dilation, groups, bias)
flops, params = profile(layer, inputs=(torch.randn(1, C_in, h, w),), custom_ops=custom_ops)
return flops
def forward_flops(self, size):
c_in, h_in, w_in = size
assert c_in == self.C_in, "c_in %d, self.C_in %d" % (c_in, self.C_in)
c_out = self.C_out
if self.stride == 1:
h_out = h_in;
w_out = w_in
else:
h_out = h_in // 2;
w_out = w_in // 2
name = "ConvBlock_H%d_W%d_Cin%d_Cout%d_exp_%dkernel%d_stride%d_group%d" % (
h_in, w_in, c_in, c_out, self.expansion, self.kernel_size, self.stride, self.groups)
if name in flops_lookup_table:
flops = flops_lookup_table[name]
else:
print("not found in flops_lookup_table:", name)
flops = ConvBlock._flops(h_in, w_in, c_in, c_out, self.expansion, self.kernel_size, self.stride,
self.padding, self.dilation, self.groups, self.bias)
flops_lookup_table[name] = flops
np.save(flops_file_name, flops_lookup_table)
return flops, (c_out, h_out, w_out)
class Skip(nn.Module):
def __init__(self, C_in, C_out, layer_id, stride=1, num_bits_list=[0, ]):
super(Skip, self).__init__()
assert stride in [1, 2]
assert C_out % 2 == 0, 'C_out=%d' % C_out
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.layer_id = layer_id
self.num_bits_list = num_bits_list
self.kernel_size = 1
self.padding = 0
if stride == 2 or C_in != C_out:
self.conv = Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
self.bn = BatchNorm2d(C_out, self.num_bits_list)
self.relu = nn.ReLU(inplace=True)
@staticmethod
def _flops(h, w, C_in, C_out, stride=1):
layer = Skip(C_in, C_out, stride)
flops, params = profile(layer, inputs=(torch.randn(1, C_in, h, w),), custom_ops=custom_ops)
return flops
def forward_flops(self, size):
c_in, h_in, w_in = size
assert c_in == self.C_in, "c_in %d, self.C_in %d" % (c_in, self.C_in)
c_out = self.C_out
if self.stride == 1:
h_out = h_in;
w_out = w_in
else:
h_out = h_in // 2;
w_out = w_in // 2
name = "Skip_H%d_W%d_Cin%d_Cout%d_stride%d" % (h_in, w_in, c_in, c_out, self.stride)
if name in flops_lookup_table:
flops = flops_lookup_table[name]
else:
print("not found in flops_lookup_table:", name)
flops = Skip._flops(h_in, w_in, c_in, c_out, self.stride)
flops_lookup_table[name] = flops
np.save(flops_file_name, flops_lookup_table)
return flops, (c_out, h_out, w_out)
def forward(self, x, num_bits=0):
if hasattr(self, 'conv'):
out = self.conv(x, num_bits)
out = self.bn(out, num_bits)
out = self.relu(out)
else:
out = x
return out
class ConvNorm(nn.Module):
'''
conv => norm => activation
use native Conv2d, not slimmable
'''
def __init__(self, C_in, C_out, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, bias=False,
num_bits_list=[0, ]):
super(ConvNorm, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.num_bits_list = num_bits_list
self.kernel_size = kernel_size
assert stride in [1, 2]
self.stride = stride
if padding is None:
# assume h_out = h_in / s
self.padding = int(np.ceil((dilation * (kernel_size - 1) + 1 - stride) / 2.))
else:
self.padding = padding
self.dilation = dilation
assert type(groups) == int
self.groups = groups
self.bias = bias
self.conv = Conv2d(C_in, C_out, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups, bias=bias)
self.bn = BatchNorm2d(C_out, self.num_bits_list)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, num_bits=0):
x = self.relu(self.bn(self.conv(x, num_bits), num_bits))
return x
@staticmethod
def _flops(h, w, C_in, C_out, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, bias=False):
layer = ConvNorm(C_in, C_out, kernel_size, stride, padding, dilation, groups, bias)
flops, params = profile(layer, inputs=(torch.randn(1, C_in, h, w),), custom_ops=custom_ops)
return flops
def forward_flops(self, size):
c_in, h_in, w_in = size
assert c_in == self.C_in, "c_in %d, self.C_in %d" % (c_in, self.C_in)
c_out = self.C_out
if self.stride == 1:
h_out = h_in;
w_out = w_in
else:
h_out = h_in // 2;
w_out = w_in // 2
name = "ConvNorm_H%d_W%d_Cin%d_Cout%d_kernel%d_stride%d_group%d" % (
h_in, w_in, c_in, c_out, self.kernel_size, self.stride, self.groups)
if name in flops_lookup_table:
flops = flops_lookup_table[name]
else:
print("not found in flops_lookup_table:", name)
flops = ConvNorm._flops(h_in, w_in, c_in, c_out, self.kernel_size, self.stride, self.padding, self.dilation,
self.groups, self.bias)
flops_lookup_table[name] = flops
np.save(flops_file_name, flops_lookup_table)
return flops, (c_out, h_out, w_out)
OPS = {
'k3_e1': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=1,
kernel_size=3, stride=stride, groups=1,
num_bits_list=num_bits_list),
'k3_e1_g2': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=1,
kernel_size=3, stride=stride, groups=2,
num_bits_list=num_bits_list),
'k3_e3': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=3,
kernel_size=3, stride=stride, groups=1,
num_bits_list=num_bits_list),
'k3_e6': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=6,
kernel_size=3, stride=stride, groups=1,
num_bits_list=num_bits_list),
'k5_e1': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=1,
kernel_size=5, stride=stride, groups=1,
num_bits_list=num_bits_list),
'k5_e1_g2': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=1,
kernel_size=5, stride=stride, groups=2,
num_bits_list=num_bits_list),
'k5_e3': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=3,
kernel_size=5, stride=stride, groups=1,
num_bits_list=num_bits_list),
'k5_e6': lambda C_in, C_out, layer_id, stride, num_bits_list: ConvBlock(C_in, C_out, layer_id, expansion=6,
kernel_size=5, stride=stride, groups=1,
num_bits_list=num_bits_list),
'skip': lambda C_in, C_out, layer_id, stride, num_bits_list: Skip(C_in, C_out, layer_id, stride,
num_bits_list=num_bits_list)
}