-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_search.py
412 lines (311 loc) · 14.7 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from __future__ import division
import os
import sys
import time
import glob
import logging
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchvision.datasets as dset
from torch.autograd import Variable
import time
from tensorboardX import SummaryWriter
import numpy as np
import matplotlib
# Force matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from PIL import Image
from config_search import config
from architect import Architect
from model_search import FBNet as Network
from model_infer import FBNet_Infer
from lr import LambdaLR
from perturb import Random_alpha
import operations
operations.DWS_CHWISE_QUANT = config.dws_chwise_quant
def main(pretrain=True):
config.save = 'ckpt/{}-{}'.format(config.save, time.strftime("%Y%m%d-%H%M%S"))
logger = SummaryWriter(config.save)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(config.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
assert type(pretrain) == bool or type(pretrain) == str
update_arch = True
if pretrain == True:
update_arch = False
logging.info("args = %s", str(config))
# preparation ################
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
seed = config.seed
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
# Model #######################################
model = Network(config=config)
model = torch.nn.DataParallel(model).cuda()
if type(pretrain) == str:
partial = torch.load(pretrain + "/weights.pt")
state = model.state_dict()
pretrained_dict = {k: v for k, v in partial.items() if k in state and state[k].size() == partial[k].size()}
for key in partial:
if 'bn.0' in key:
new_key_list = []
for i in range(1, len(config.num_bits_list)):
new_key = []
new_key.extend(key.split('.')[:-2])
new_key.append(str(i))
new_key.append(key.split('.')[-1])
new_key = '.'.join(new_key)
pretrained_dict[new_key] = partial[key]
state.update(pretrained_dict)
model.load_state_dict(state, strict=False)
architect = Architect(model, config)
# Optimizer ###################################
base_lr = config.lr
# parameters = []
# parameters += list(model.module.stem.parameters())
# parameters += list(model.module.cells.parameters())
# parameters += list(model.module.header.parameters())
# parameters += list(model.module.fc.parameters())
if config.opt == 'Adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=config.lr,
betas=config.betas)
elif config.opt == 'Sgd':
optimizer = torch.optim.SGD(
model.parameters(),
lr=config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay)
else:
logging.info("Wrong Optimizer Type.")
sys.exit()
# lr policy ##############################
total_iteration = config.nepochs * config.niters_per_epoch
if config.lr_schedule == 'linear':
lr_policy = torch.optim.lr_scheduler.LambdaLR(optimizer,
lr_lambda=LambdaLR(config.nepochs, 0, config.decay_epoch).step)
elif config.lr_schedule == 'exponential':
lr_policy = torch.optim.lr_scheduler.ExponentialLR(optimizer, config.lr_decay)
elif config.lr_schedule == 'multistep':
lr_policy = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=config.milestones, gamma=config.gamma)
elif config.lr_schedule == 'cosine':
lr_policy = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.nepochs),
eta_min=config.learning_rate_min)
else:
logging.info("Wrong Learning Rate Schedule Type.")
sys.exit()
# data loader ###########################
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
if config.dataset == 'cifar10':
train_data = dset.CIFAR10(root=config.dataset_path, train=True, download=True, transform=transform_train)
test_data = dset.CIFAR10(root=config.dataset_path, train=False, download=True, transform=transform_test)
elif config.dataset == 'cifar100':
train_data = dset.CIFAR100(root=config.dataset_path, train=True, download=True, transform=transform_train)
test_data = dset.CIFAR100(root=config.dataset_path, train=False, download=True, transform=transform_test)
else:
print('Wrong dataset.')
sys.exit()
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(config.train_portion * num_train))
train_loader_model = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=False, num_workers=config.num_workers)
train_loader_arch = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
pin_memory=False, num_workers=config.num_workers)
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers)
tbar = tqdm(range(config.nepochs), ncols=80)
for epoch in tbar:
logging.info(pretrain)
logging.info(config.save)
logging.info("lr: " + str(optimizer.param_groups[0]['lr']))
logging.info("update arch: " + str(update_arch))
lr_policy.step()
if config.perturb_alpha:
epsilon_alpha = 0.03 + (config.epsilon_alpha - 0.03) * epoch / config.nepochs
logging.info('Epoch %d epsilon_alpha %e', epoch, epsilon_alpha)
else:
epsilon_alpha = 0
temp = config.temp_init * config.temp_decay ** epoch
logging.info("Temperature: " + str(temp))
# training
tbar.set_description("[Epoch %d/%d][train...]" % (epoch + 1, config.nepochs))
train(train_loader_model, train_loader_arch, model, architect, optimizer, lr_policy, logger, epoch,
num_bits_list=config.num_bits_list, update_arch=update_arch,
epsilon_alpha=epsilon_alpha,
criteria=config.criteria, temp=temp)
torch.cuda.empty_cache()
# validation
if epoch and not (epoch + 1) % config.eval_epoch:
tbar.set_description("[Epoch %d/%d][validation...]" % (epoch + 1, config.nepochs))
save(model, os.path.join(config.save, 'weights_%d.pt' % epoch))
with torch.no_grad():
if pretrain == True:
acc_bits = infer(epoch, model, test_loader, logger, config.num_bits_list, temp=temp)
for i, num_bits in enumerate(config.num_bits_list):
logger.add_scalar('acc/val_bits_%d' % num_bits, acc_bits[i], epoch)
logging.info("Epoch: " + str(epoch) + " Acc under different bits: " + str(acc_bits))
else:
acc_bits, metric = infer(epoch, model, test_loader, logger, config.num_bits_list, finalize=True,
temp=temp)
for i, num_bits in enumerate(config.num_bits_list):
logger.add_scalar('acc/val_bits_%d' % num_bits, acc_bits[i], epoch)
logging.info("Epoch: " + str(epoch) + " Acc under different bits: " + str(acc_bits))
state = {}
logger.add_scalar('flops/val', metric, epoch)
logging.info("Epoch: %d Flops: %.3f" % (epoch, metric))
state["flops"] = metric
state['alpha'] = getattr(model.module, 'alpha')
state["acc"] = acc_bits
torch.save(state, os.path.join(config.save, "arch_%d.pt" % (epoch)))
if config.flops_weight > 0:
if metric < config.flops_min:
architect.flops_weight /= 2
elif metric > config.flops_max:
architect.flops_weight *= 2
logger.add_scalar("arch/flops_weight", architect.flops_weight, epoch + 1)
logging.info("arch_flops_weight = " + str(architect.flops_weight))
if config.early_stop_by_skip:
groups = config.num_layer_list[1:-1]
num_block = groups[0]
current_arch = getattr(model.module, 'alpha').data[1:-1].argmax(-1)
early_stop = False
for group_id in range(len(groups)):
num_skip = 0
for block_id in range(num_block):
if current_arch[group_id * num_block + block_id] == 8:
num_skip += 1
if num_skip >= 2:
early_stop = True
if early_stop:
print('Early Stop at epoch %d.' % epoch)
break
if update_arch:
torch.save(state, os.path.join(config.save, "arch.pt"))
def train(train_loader_model, train_loader_arch, model, architect, optimizer, lr_policy, logger, epoch, num_bits_list,
update_arch=True, epsilon_alpha=0, criteria=None, temp=1):
model.train()
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(config.niters_per_epoch), file=sys.stdout, bar_format=bar_format, ncols=80)
dataloader_model = iter(train_loader_model)
dataloader_arch = iter(train_loader_arch)
for step in pbar:
input, target = dataloader_model.next()
# end = time.time()
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# time_data = time.time() - end
# end = time.time()
if update_arch:
pbar.set_description("[Step %d/%d]" % (step + 1, len(train_loader_arch)))
input_search, target_search = dataloader_arch.next()
input_search = input_search.cuda(non_blocking=True)
target_search = target_search.cuda(non_blocking=True)
loss_arch = architect.step(input, target, input_search, target_search, num_bits_list, temp=temp)
if (step + 1) % 10 == 0:
for i, num_bits in enumerate(num_bits_list):
if loss_arch[i] != -1:
logger.add_scalar('loss_arch/num_bits_%d' % num_bits, loss_arch[i], epoch * len(pbar) + step)
logger.add_scalar('arch/flops_supernet', architect.flops_supernet, epoch * len(pbar) + step)
# print(model.module.alpha[1])
# print(model.module.ratio[1])
if epsilon_alpha:
Random_alpha(model, epsilon_alpha)
optimizer.zero_grad()
loss_value = [-1 for _ in num_bits_list]
if criteria is not None:
if criteria == 'min':
num_bits = min(num_bits_list)
else:
num_bits = max(num_bits_list)
logit = model(input, num_bits, temp=temp)
loss = model.module._criterion(logit, target)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
optimizer.zero_grad()
loss_value[num_bits_list.index(num_bits)] = loss.item()
else:
for num_bits in sorted(num_bits_list, reverse=True):
logit = model(input, num_bits, temp=temp)
loss = model.module._criterion(logit, target)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
optimizer.zero_grad()
loss_value[num_bits_list.index(num_bits)] = loss.item()
for i, num_bits in enumerate(num_bits_list):
if loss_value[i] != -1:
logger.add_scalar('loss/num_bits_%d' % num_bits, loss_value[i], epoch * len(pbar) + step)
# time_bw = time.time() - end
# end = time.time()
# print("[Step %d/%d]" % (step + 1, len(train_loader_model)), 'Loss:', loss, 'Time Data:', time_data, 'Time Forward:', time_fw, 'Time Backward:', time_bw)
pbar.set_description("[Step %d/%d]" % (step + 1, len(train_loader_model)))
torch.cuda.empty_cache()
del loss
if update_arch: del loss_arch
def infer(epoch, model, test_loader, logger, num_bits_list, finalize=False, temp=1):
model.eval()
prec1_list = []
acc_bits = []
for num_bits in num_bits_list:
for i, (input, target) in enumerate(test_loader):
input_var = Variable(input, volatile=True).cuda()
target_var = Variable(target, volatile=True).cuda()
output = model(input_var, num_bits)
prec1, = accuracy(output.data, target_var, topk=(1,))
prec1_list.append(prec1)
acc = sum(prec1_list) / len(prec1_list)
acc_bits.append(acc)
if finalize:
model_infer = FBNet_Infer(getattr(model.module, 'alpha'), config=config)
flops = model_infer.forward_flops((3, 32, 32))
return acc_bits, flops
else:
return acc_bits
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save(model, model_path):
torch.save(model.state_dict(), model_path)
if __name__ == '__main__':
main(pretrain=config.pretrain)