-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
93 lines (67 loc) · 3.23 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
#!/usr/bin/env python
# DBSCAN_multiplex/setup.py;
# Author: Gregory Giecold for the GC Yuan Lab
# Affiliation: Harvard University
# Contact: [email protected], [email protected]
"""Setup script for DBSCAN_multiplex, a fast and memory-efficient implementation of DBSCAN
(Density-Based Spatial Clustering of Appplications with Noise).
The gain is especially outstanding for applications involving multiple rounds of down-sampling
and clustering from a common dataset.
References
----------
* Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., "A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise".
In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. 1996
* Kriegel, H.-P., Kroeger, P., Sander, J. and Zimek, A., "Density-based Clustering".
In: WIREs Data Mining and Knowledge Discovery, 1, 3, pp. 231–240. 2011
"""
import codecs
from os import path
from sys import version
from distutils.core import setup
if version < '2.2.3':
from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None
here = path.abspath(path.dirname(__file__))
try:
import pypandoc
z = pypandoc.convert('README.md', 'rst', format = 'markdown')
with open(path.join(here, 'README'), 'w') as f:
f.write(z)
with codecs.open(path.join(here, 'README'), encoding = 'utf-8') as f:
long_description = f.read()
except:
print("WARNING: 'pypandoc' module not found: could not convert from Markdown to RST format")
long_description = ''
setup(name = 'DBSCAN_multiplex',
version = '1.5',
description = 'Fast and memory-efficient DBSCAN clustering,'
'possibly on various subsamples out of a common dataset',
long_description = long_description,
url = 'https://github.com/GGiecold/DBSCAN_multiplex',
download_url = 'https://github.com/GGiecold/DBSCAN_multiplex',
author = 'Gregory Giecold',
author_email = '[email protected]',
maintainer = 'Gregory Giecold',
maintainer_email = '[email protected]',
license = 'MIT License',
py_modules = ['DBSCAN_multiplex'],
platforms = ('Any',),
requires = ['numpy (>=1.9.0)', 'sklearn', 'tables'],
classifiers = ['Development Status :: 4 - Beta',
'Environment :: Console',
'Intended Audience :: End Users/Desktop',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Operating System :: MacOS :: MacOS X',
'Operating System :: POSIX',
'Programming Language :: Python :: 2.7',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Visualization',
'Topic :: Scientific/Engineering :: Mathematics', ],
keywords = 'machine-learning clustering',
)