-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path13_cumulative_sums_test.py
64 lines (54 loc) · 1.69 KB
/
13_cumulative_sums_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import math
import scipy.special as ss
def normcdf(n):
return 0.5 * math.erfc(-n * math.sqrt(0.5))
def p_value(n,z):
sum_a = 0.0
startk = int(math.floor((((float(-n)/z)+1.0)/4.0)))
endk = int(math.floor((((float(n)/z)-1.0)/4.0)))
for k in range(startk,endk+1):
c = (((4.0*k)+1.0)*z)/math.sqrt(n)
#d = scipy.stats.norm.cdf(c)
d = normcdf(c)
c = (((4.0*k)-1.0)*z)/math.sqrt(n)
#e = scipy.stats.norm.cdf(c)
e = normcdf(c)
sum_a = sum_a + d - e
sum_b = 0.0
startk = int(math.floor((((float(-n)/z)-3.0)/4.0)))
endk = int(math.floor((((float(n)/z)-1.0)/4.0)))
for k in range(startk,endk+1):
c = (((4.0*k)+3.0)*z)/math.sqrt(n)
#d = scipy.stats.norm.cdf(c)
d = normcdf(c)
c = (((4.0*k)+1.0)*z)/math.sqrt(n)
#e = scipy.stats.norm.cdf(c)
e = normcdf(c)
sum_b = sum_b + d - e
p = 1.0 - sum_a + sum_b
return p
def test(input, n):
# Step 1
x = list() # Convert to +1,-1
for i in range(n):
#if bit == 0:
x.append(int(input[i],2)*2-1)
# Steps 2 and 3 Combined
# Compute the partial sum and records the largest excursion.
pos = 0
forward_max = 0
for e in x:
pos = pos+e
if abs(pos) > forward_max:
forward_max = abs(pos)
pos = 0
backward_max = 0
for e in reversed(x):
pos = pos+e
if abs(pos) > backward_max:
backward_max = abs(pos)
# Step 4
p_forward = p_value(n, forward_max)
p_backward = p_value(n,backward_max)
success = ((p_forward >= 0.01) and (p_backward >= 0.01))
return [p_forward, p_backward, success]