-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA-Star.py
74 lines (52 loc) · 1.75 KB
/
A-Star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
A* Search#
Both Greedy Breadth-First Search and A* use a heuristic function.
The only difference is that A* uses both the heuristic and the ordering from Dijkstra’s Algorithm.
"""
class SimpleGraph:
def __init__(self):
self.edges = {}
def neighbors(self, id):
return self.edges[id]
class PriorityQueue:
def __init__(self):
self.elements = []
def empty(self):
return len(self.elements) == 0
def put(self, item, priority):
heapq.heappush(self.elements, (priority, item))
def get(self):
return heapq.heappop(self.elements)[1]
def heuristic(a,b):
(x1,y1) = a
(x2,y2) = b
return abs(x1 - x2) + abs(y1 - y2)
def a_star_search(graph, start, goal):
"""
Implementing A * search
"""
frontier = PriorityQueue()
frontier.put(start,0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0
while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost + heuristic(goal,next)
frontier.put(next, priority)
came_from[next] = current
return came_from, cost_so_far
# Trying the code here..
from implementation import *
start,goal = (1,4),(7,8)
came_from, cost_so_far = a_star_search(diagram4, start,goal)
draw_grid(diagram4,width=3, point_to = came_from, start = start, goal=goal)
print()
draw_grid(diagram4,width=3, number = cost_so_far, start=start, goal=goal)