-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathbackend.rs
139 lines (116 loc) · 3.9 KB
/
backend.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use burn::tensor::{activation::softmax, Tensor};
use burn::prelude::Backend;
/*pub type FloatTensor<B, const D: usize> = <B as burn::tensor::backend::Backend>::TensorPrimitive<D>;
pub trait Backend: burn::tensor::backend::Backend {
fn qkv_attention(
q: FloatTensor<Self, 3>,
k: FloatTensor<Self, 3>,
v: FloatTensor<Self, 3>,
mask: Option<FloatTensor<Self, 2>>,
n_head: usize,
) -> FloatTensor<Self, 3> {
qkv_attention(
Tensor::<Self, 3>::from_primitive(q),
Tensor::from_primitive(k),
Tensor::from_primitive(v),
mask.map(|m| Tensor::from_primitive(m)),
n_head,
)
.into_primitive()
}
fn attn_decoder_mask(seq_length: usize, device: &Self::Device) -> FloatTensor<Self, 2> {
attn_decoder_mask::<Self>(seq_length, device).into_primitive()
}
}
use burn::tensor::Float;
use burn_tch::{self, TchElement, TchTensor};
use tch;
impl<E: TchElement> Backend for burn_tch::LibTorch<E> {
fn qkv_attention(
q: FloatTensor<Self, 3>,
k: FloatTensor<Self, 3>,
v: FloatTensor<Self, 3>,
mask: Option<FloatTensor<Self, 2>>,
n_head: usize,
) -> FloatTensor<Self, 2> {
let q = Tensor::from_primitive(q);
let k = Tensor::from_primitive(k);
let v = Tensor::from_primitive(v);
let [n_batch, q_ctx, n_state] = q.dims();
let [_, k_ctx, _] = k.dims();
let n_hstate = n_state / n_head;
let rearrange = |t: Tensor<Self, 3>| {
let [_, n_ctx, _] = t.dims();
t.reshape([n_batch, n_ctx, n_head, n_hstate])
.swap_dims(1, 2)
};
let q = rearrange(q).into_primitive();
let k = rearrange(k).into_primitive();
let v = rearrange(v).into_primitive();
// for some reason torch crashes when mask is None
let mask = mask.unwrap_or_else(|| {
Tensor::<Self, 2, Float>::zeros([q_ctx, k_ctx], &Self::device(&v))
.into_primitive()
});
Tensor::<Self, 4>::from_primitive(TchTensor::new(
tch::Tensor::scaled_dot_product_attention(
&q.tensor,
&k.tensor,
&v.tensor,
Some(mask.tensor),
0.0,
false,
None,
),
))
.swap_dims(1, 2)
.flatten(2, 3)
.into_primitive()
}
}
use burn_autodiff;
impl<B: Backend> Backend for burn_autodiff::Autodiff<B> {}*/
use std::f32::NEG_INFINITY;
pub fn qkv_attention<B: Backend>(
q: Tensor<B, 3>,
k: Tensor<B, 3>,
v: Tensor<B, 3>,
mask: Option<Tensor<B, 2>>,
n_head: usize,
) -> Tensor<B, 3> {
let [n_batch, n_qctx, n_state] = q.dims();
let [_, n_ctx, _] = k.dims();
let scale = (n_state as f64 / n_head as f64).powf(-0.25);
let n_hstate = n_state / n_head;
let q = q
.reshape([n_batch, n_qctx, n_head, n_hstate])
.swap_dims(1, 2)
* scale;
let k = k
.reshape([n_batch, n_ctx, n_head, n_hstate])
.swap_dims(1, 2)
.transpose()
* scale;
let v = v
.reshape([n_batch, n_ctx, n_head, n_hstate])
.swap_dims(1, 2);
let qk = q.matmul(k);
// apply mask
let qk = if let Some(mask) = mask {
qk + mask.slice([0..n_qctx, 0..n_ctx]).unsqueeze::<4>()
} else {
qk
};
// normalize value weightings
let w = softmax(qk, 3);
let o = w.matmul(v).swap_dims(1, 2).flatten(2, 3);
return o;
}
pub fn attn_decoder_mask<B: Backend>(seq_length: usize, device: &B::Device) -> Tensor<B, 2> {
let mut mask = Tensor::<B, 2>::zeros([seq_length, seq_length], device);
for i in 0..(seq_length - 1) {
let values = Tensor::<B, 2>::zeros([1, seq_length - (i + 1)], device).add_scalar(NEG_INFINITY);
mask = mask.slice_assign([i..i + 1, i + 1..seq_length], values);
}
return mask;
}