-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference_vgae.py
118 lines (99 loc) · 4.96 KB
/
inference_vgae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import yaml
import json
import torch
import argparse
import pandas as pd
import numpy as np
import logging
import torch.nn.functional as F
from utils.logger import ColoredLogger
from dataset import get_citation_dataset
from models.models import SpecterVGAE
logging.setLoggerClass(ColoredLogger)
logger = logging.getLogger(__name__)
class VGAEInferencer(object):
def __init__(self, **kwargs):
super(VGAEInferencer, self).__init__()
EMBEDDING_DIM = kwargs.get('embedding_dim', 768)
MULTIGPU = kwargs.get('multigpu', False)
SPECTER_BATCH_SIZE = kwargs.get('specter_batch_size', 4)
MAX_LENGTH = kwargs.get('max_length', 512)
SEQ_LEN = kwargs.get('seq_len', 50)
END_YEAR = kwargs.get('end_year', 2020)
FREQUENCY = kwargs.get('frequency', 5)
STATS_DIR = kwargs.get('stats_dir', os.path.join('stats', 'vgae'))
DATA_PATH = kwargs.get('data_path', os.path.join('data', 'citation.csv'))
EMBEDDING_FILENAME = kwargs.get('embedding_filename', 'embeddings.npy')
SPECTER_EMBEDDING_FILENAME = kwargs.get('specter_embedding_filename', 'specter_embeddings.npy')
if os.path.exists(STATS_DIR) == False:
os.makedirs(STATS_DIR)
checkpoint_file = os.path.join(STATS_DIR, 'checkpoint.tar')
self.embedding_file = os.path.join(STATS_DIR, EMBEDDING_FILENAME)
specter_embedding_file = os.path.join(STATS_DIR, SPECTER_EMBEDDING_FILENAME)
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load data & Build dataset
logger.info('Reading citation dataset ...')
self.edge_list, _, _, _, self.node_info = get_citation_dataset(DATA_PATH, seq_len = SEQ_LEN, year = END_YEAR, frequency = FREQUENCY)
logger.info('File read successfully. Now reading edge list for training ...')
self.node_num = len(self.node_info)
df = pd.read_csv(os.path.join(STATS_DIR, 'train_pos_edge_list.csv'))
self.train_edge_list = [[row['source'], row['destination']] for _, row in df.iterrows()]
logger.info('File read successfully.')
# Build model from configs
self.model = SpecterVGAE(embedding_dim = EMBEDDING_DIM, max_length = MAX_LENGTH)
self.model.process_paper_feature(self.node_info, use_saved_results = True, filepath = specter_embedding_file, device = self.device, specter_device = self.device, process_batch_size = SPECTER_BATCH_SIZE)
self.model.to(self.device)
if os.path.isfile(checkpoint_file):
checkpoint = torch.load(checkpoint_file, map_location = self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
epoch = checkpoint['epoch']
logger.info('Load checkpoint {} (epoch {})'.format(checkpoint_file, epoch))
else:
raise AttributeError('No checkpoint file!')
if MULTIGPU is True:
self.model = torch.nn.DataParallel(self.model)
self.prepare_embeddings()
def prepare_embeddings(self):
self.model.eval()
edge_list = torch.LongTensor(self.edge_list).to(self.device).transpose(1, 0)
logger.info('Fetching embedding results ...')
with torch.no_grad():
self.emb = self.model.encode(edge_list)
logger.info('Results fetched. Now saving to {} ...'.format(self.embedding_file))
emb = self.emb.cpu().detach().numpy()
np.save(self.embedding_file, emb)
logger.info('File saved successfully.')
def find_topk(self, node_info, k = 10):
id = node_info['id']
node_emb = self.emb[id]
similarity = F.cosine_similarity(node_emb.reshape(1, -1), self.emb, dim = 1)
_, topkid = torch.topk(similarity, k = k + 1, dim = -1, largest = True, sorted = True)
topkid = topkid.cpu().detach().numpy()
res = []
for i, paper_id in enumerate(topkid.tolist()):
if i == 0:
continue
node_info = self.node_info[paper_id]
node_info['id'] = paper_id
res.append(node_info)
return {"result": res}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default = os.path.join('configs', 'vgae.yaml'), help = 'Config File', type = str)
parser.add_argument('--input', default = os.path.join('examples', 'relation.json'))
parser.add_argument('--output', default = os.path.join('examples', 'relation-res.json'))
FLAGS = parser.parse_args()
CFG_FILE = FLAGS.cfg
INPUT_FILE = FLAGS.input
OUTPUT_FILE = FLAGS.output
if os.path.exists(os.path.dirname(OUTPUT_FILE)) == False:
os.makedirs(os.path.dirname(OUTPUT_FILE))
with open(CFG_FILE, 'r') as cfg_file:
cfgs = yaml.load(cfg_file, Loader = yaml.FullLoader)
inferencer = VGAEInferencer(**cfgs)
with open(INPUT_FILE, 'r') as f:
input_dict = json.load(f)
output_dict = inferencer.find_topk(input_dict)
with open(OUTPUT_FILE, 'w') as f:
json.dump(output_dict, f)