-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
56 lines (51 loc) · 1.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# # import os
# # # os.add_dll_directory('C:/Users/admin/.mujoco/mujoco200/bin')
# #
# # import mujoco_py
# #
# # mj_path,_= mujoco_py.utils.discover_mujoco()
# # xml_path = os.path.join(mj_path, 'model', 'humanoid.xml')
# # model = mujoco_py.load_model_from_path(xml_path)
# # sim = mujoco_py.MjSim(model)
# # print(sim.data.qpos)
# # sim.step()
# # print(sim.data.qpos)
#
#
#
# import gym
# env = gym.make("CartPole-v1") # 创建游戏环境
# observation = env.reset() # 游戏回到初始状态
# for _ in range(1000):
# env.render() # 显示当前时间戳的游戏画面
# action = env.action_space.sample() # 随机生成一个动作
# # 与环境交互,返回新的状态,奖励,是否结束标志,其他信息
# observation, reward, done, info = env.step(action)
# if done:#游戏回合结束,复位状态
# observation = env.reset()
# env.close()
# #开发者:Bright Fang
# #开发时间:2022/5/8 12:33
# import gym
# # import mujoco
# env = gym.make('Humanoid-v2')
# env = env.unwrapped
# for episode in range(20):
# observation = env.reset() #环境重置
# print(episode)
# # for timestep in range(100):
# while True:
# # print(timestep)
# env.render() #可视化
# action = env.action_space.sample() #动作采样
# observation_, reward, done, info = env.step(action) #单步交互
# # if done:
# # # print(observation)
# # print('Episode {}'.format(episode))
# # break
# observation=observation_
# env.close()
# 测试内容
print('test')
# 测试上传方式
print('test11')