We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have tried to run all the examples provided for generating 3D random samples, and they all returned same error below
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[48], line 2 1 model = Gaussian(dim=3, var=3, len_scale=1.5) ----> 2 srf = SRF(model, mean=(0.5, 0, 0), generator="VectorField", seed=198412031) File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\srf.py:100, in SRF.__init__(self, model, mean, normalizer, trend, upscaling, generator, **generator_kwargs) 98 # initialize attributes 99 self.upscaling = upscaling --> 100 self.set_generator(generator, **generator_kwargs) File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\srf.py:161, in SRF.set_generator(self, generator, **generator_kwargs) 159 if generator in GENERATOR: 160 gen = GENERATOR[generator] --> 161 self._generator = gen(self.model, **generator_kwargs) 162 self.value_type = self._generator.value_type 163 else: File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\generator.py:395, in IncomprRandMeth.__init__(self, model, mean_velocity, mode_no, seed, verbose, sampling, **kwargs) 391 if model.dim < 2 or model.dim > 3: 392 raise ValueError( 393 "Only 2D and 3D incompressible fields can be generated." 394 ) --> 395 super().__init__(model, mode_no, seed, verbose, sampling, **kwargs) 397 self.mean_u = mean_velocity 398 self._value_type = "vector" File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\generator.py:108, in RandMeth.__init__(self, model, mode_no, seed, verbose, sampling, **kwargs) 106 self.sampling = sampling 107 # set model and seed --> 108 self.update(model, seed) File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\generator.py:174, in RandMeth.update(self, model, seed) 172 self._model = dcp(model) 173 if seed is None or not np.isnan(seed): --> 174 self.reset_seed(seed) 175 else: 176 self.reset_seed(self._seed) File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\field\generator.py:242, in RandMeth.reset_seed(self, seed) 238 rad = self._rng.sample_dist( 239 size=self._mode_no, pdf=pdf, cdf=cdf, ppf=ppf, a=0 240 ) 241 else: --> 242 rad = self._rng.sample_ln_pdf( 243 ln_pdf=self.model.ln_spectral_rad_pdf, 244 size=self._mode_no, 245 sample_around=1.0 / self.model.len_rescaled, 246 ) 247 # get fully spatial samples by multiplying sphere samples and radii 248 self._cov_sample = rad * sphere_coord File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\gstools\random\rng.py:98, in RNG.sample_ln_pdf(self, ln_pdf, size, sample_around, nwalkers, burn_in, oversampling_factor) 96 initial_state = State(burn_in_state, copy=True) 97 initial_state.random_state = self.random.get_state() ---> 98 sampler.run_mcmc(initial_state=initial_state, nsteps=sample_size) 99 samples = sampler.get_chain(flat=True)[:, 0] 101 # choose samples according to size File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\emcee\ensemble.py:450, in EnsembleSampler.run_mcmc(self, initial_state, nsteps, **kwargs) 447 initial_state = self._previous_state 449 results = None --> 450 for results in self.sample(initial_state, iterations=nsteps, **kwargs): 451 pass 453 # Store so that the ``initial_state=None`` case will work File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\emcee\ensemble.py:386, in EnsembleSampler.sample(self, initial_state, log_prob0, rstate0, blobs0, iterations, tune, skip_initial_state_check, thin_by, thin, store, progress, progress_kwargs) 384 checkpoint_step = thin_by 385 if store: --> 386 self.backend.grow(iterations, state.blobs) 388 # Set up a wrapper around the relevant model functions 389 if self.pool is not None: File ~\AppData\Local\Programs\Python\Python38\lib\site-packages\emcee\backends\backend.py:175, in Backend.grow(self, ngrow, blobs) 173 self._check_blobs(blobs) 174 i = ngrow - (len(self.chain) - self.iteration) --> 175 a = np.empty((i, self.nwalkers, self.ndim), dtype=self.dtype) 176 self.chain = np.concatenate((self.chain, a), axis=0) 177 a = np.empty((i, self.nwalkers), dtype=self.dtype) TypeError: 'float' object cannot be interpreted as an integer
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
This is the exact same issue as this: #183 Which was solved in GSTools v1.3.2 here: #184
Do you use an old version of GSTools? If this is intended, use emcee with a version <3.1.
<3.1
@Falfat could you solve your problem?
Yes, I did. Thanks!
MuellerSeb
No branches or pull requests
I have tried to run all the examples provided for generating 3D random samples, and they all returned same error below
The text was updated successfully, but these errors were encountered: