-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfunctions.py
executable file
·260 lines (223 loc) · 9.2 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function, division
import torch
import tensorflow as tf
import numpy as np
from PIL import Image, ImageOps
import string
import os
import random
import time
from tqdm import tqdm
import math
import pickle
def id_generator(size=8, chars=string.ascii_uppercase + string.digits):
return ''.join(random.choice(chars) for _ in range(size))
def total_parameters(scope=None):
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
return total_parameters
def gaussian_kernel(shape=(32,32),sigma=5):
radius_x,radius_y = [(radius-1.)/2. for radius in shape]
y_range,x_range = np.ogrid[-radius_y:radius_y+1,-radius_x:radius_x+1]
h = np.exp( -(x_range*x_range + y_range*y_range) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max()] = 0
sumofh = h.sum()
if sumofh != 0:
h /= sumofh
return h
def get_downsized_density_maps(density_map):
ddmaps = []
ratios = [8,16,32,64,128]
with tf.device('/gpu:0'):
ddmap = tf.layers.average_pooling2d(density_map, ratios[0], ratios[0], padding='same') * (ratios[0] * ratios[0])
ddmaps.append(tf.squeeze(ddmap,0))
if len(ratios)>1:
for i in range(len(ratios)-1):
ratio = int(ratios[i+1]/ratios[i])
ddmap = tf.layers.average_pooling2d(ddmap, ratio, ratio, padding='same') * (ratio * ratio)
ddmaps.append(tf.squeeze(ddmap,0))
return ddmaps, [tf.image.flip_left_right(ddmap) for ddmap in ddmaps]
def fit_grid(img_height, img_width, input_size=[384,512]):
input_height, input_width = input_size
columns = max(1, int(round(img_width/input_width)))
rows = max(1, int(round(input_width*columns*img_height/img_width/input_height)))
return rows, columns
def get_coords_map(coords, resize, img_size):
resized_height, resized_width = resize
img_height, img_width = img_size
new_coords = []
for coord in coords:
new_coord = [0,0]
new_coord[0] = min(coord[0], img_width-1)*resized_width/img_width
new_coord[1] = min(coord[1], img_height-1)*resized_height/img_height
new_coords.append(new_coord)
coords_map = np.zeros([1, resized_height, resized_width, 1])
for coord in new_coords:
coords_map[0][int(coord[1])][int(coord[0])][0] += 1
return coords_map
def preprocess_data(names, data_path, save_path='./processed', random_crop=None, divide=True, input_size=[384, 512]
, test=False, test_dict=None, load_data_fn=None):
assert load_data_fn is not None and hasattr(load_data_fn, '__call__'), 'a function for loading image and coordinates must be given'
if not data_path.endswith('/'):
data_path += '/'
if not save_path.endswith('/'):
save_path += '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
if test and not 'names_to_name' in test_dict:
test_dict['names_to_name'] = {}
input_height, input_width = input_size
prog = 0
out_names = []
kernel_size = 49
kernel = gaussian_kernel(shape=(kernel_size,kernel_size),sigma=10)
kernel = np.reshape(kernel, kernel.shape+(1,1))
graph_get_dmap = tf.Graph()
with graph_get_dmap.as_default():
kernel = tf.constant(kernel, dtype=tf.float32)
tf_coords_map_p = tf.placeholder(tf.float32, [1,None,None,1])
tf_dmap = tf.nn.conv2d(tf_coords_map_p, kernel, strides=(1,1,1,1), padding='SAME')
graph_get_downsized_dmaps = tf.Graph()
with graph_get_downsized_dmaps.as_default():
tf_dmap_p = tf.placeholder(tf.float32, [1,input_height,input_width,1])
tf_ddmaps = get_downsized_density_maps(tf_dmap_p)
sess_get_dmap = tf.Session(graph=graph_get_dmap)
sess_get_downsized_dmaps = tf.Session(graph=graph_get_downsized_dmaps)
for ni in tqdm(range(len(names))):
name = data_path + names[ni]
img, coords = load_data_fn(name)
if img.mode !='RGB':
img = img.convert('RGB')
img_width, img_height = img.size
imgs = []
dmaps = []
rows, columns = fit_grid(img_height, img_width, input_size=[input_height, input_width])
resized_height = rows*input_height
resized_width = columns*input_width
new_img = img.resize((resized_width, resized_height))
coords_map = get_coords_map(coords, resize=[resized_height, resized_width], img_size=[img_height, img_width])
dmap = sess_get_dmap.run(tf_dmap, feed_dict={
tf_coords_map_p: coords_map
})
if divide:
for row in range(rows):
for col in range(columns):
crop_top = input_height*row
crop_left = input_width*col
crop_bottom = crop_top + input_height
crop_right = crop_left + input_width
img_crop = new_img.crop((crop_left, crop_top, crop_right, crop_bottom))
ddmaps, ddmaps_mirrored = sess_get_downsized_dmaps.run(tf_ddmaps, feed_dict={
tf_dmap_p: dmap[:, crop_top:crop_bottom, crop_left:crop_right]
})
imgs.append(img_crop)
dmaps.append(ddmaps)
if not test:
imgs.append(ImageOps.mirror(img_crop))
dmaps.append(ddmaps_mirrored)
if random_crop is not None and not (rows==1 and columns==1) and not test:
for b in range(random_crop):
crop_top = 0 if rows==1 else np.random.randint(0, resized_height - input_height)
crop_left = 0 if columns==1 else np.random.randint(0, resized_width - input_width)
crop_bottom = crop_top + input_height
crop_right = crop_left + input_width
img_crop = new_img.crop((crop_left, crop_top, crop_right, crop_bottom))
ddmaps, ddmaps_mirrored = sess_get_downsized_dmaps.run(tf_ddmaps, feed_dict={
tf_dmap_p: dmap[:, crop_top:crop_bottom, crop_left:crop_right]
})
imgs.append(img_crop)
dmaps.append(ddmaps)
imgs.append(ImageOps.mirror(img_crop))
dmaps.append(ddmaps_mirrored)
for i in range(len(imgs)):
new_name = id_generator()
img_i = imgs[i]
if not test and random.random()>0.9:
img_i = img_i.convert('L').convert('RGB')
img_i.save(save_path + new_name + '.jpg', 'JPEG')
with open(save_path + new_name + '.pkl', 'wb') as f:
pickle.dump(dmaps[i], f)
out_names.append(save_path + new_name)
if test:
test_dict['names_to_name'][save_path + new_name] = name
if test:
test_dict[name] = {
'predict': -1,
'truth': np.sum(dmap)
}
return out_names
def set_pretrained(sess):
torch_dict = torch.load('vgg16-397923af.pth')
tf_p_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
torch_p_ids = [0, 2, 5, 7, 10, 12, 14, 17, 19, 21]
trainables = tf.trainable_variables()
for i in range(10):
tf_name_w = 'vgg_conv_'+str(tf_p_ids[i])+'/kernel:0'
tf_name_b = 'vgg_conv_'+str(tf_p_ids[i])+'/bias:0'
torch_name_w = 'features.'+str(torch_p_ids[i])+'.weight'
torch_name_b = 'features.'+str(torch_p_ids[i])+'.bias'
var_w = [v for v in trainables if v.name == tf_name_w ][0]
sess.run(tf.assign(var_w, np.transpose(torch_dict[torch_name_w].data.numpy(), (2,3,1,0))))
var_b = [v for v in trainables if v.name == tf_name_b ][0]
sess.run(tf.assign(var_b, torch_dict[torch_name_b].data.numpy()))
# test_set_pretrained('CAC/vgg_conv_10/kernel:0', 'features.21.weight', torch_dict)
def test_set_pretrained(tf_name, torch_name, torch_dict):
def check_equal(a, b):
a = a.flatten()
b = b.flatten()
if len(a) != len(b):
print('inequivalent length:', len(a), '!=', len(b))
return False
for m in range(len(a)):
if abs(a[m]-b[m]) > 0.000001:
print(a[m], '!=', b[m], 'at', m)
return False
return True
tf_data = [v for v in tf.trainable_variables() if v.name ==tf_name][0].read_value().eval()
torch_data = torch_dict[torch_name].data.numpy()
assert check_equal(tf_data, torch_data)
def moving_average(new_val, last_avg, theta=0.95):
return round((1-theta) * new_val + theta* last_avg, 2)
def moving_average_array(new_vals, last_avgs, theta=0.95):
return [round((1-theta) * new_vals[i] + theta* last_avgs[i], 2) for i in range(len(new_vals))]
def MAE(predicts, targets):
return round( np.mean( np.absolute( np.sum(predicts, (1,2,3)) - np.sum(targets, (1,2,3)) )), 1)
def normalize(imgs):
new_imgs = []
for i in range(len(imgs)):
img = imgs[i] / 255
img -= [0.485, 0.456, 0.406]
img /= [0.229, 0.224, 0.225]
new_imgs.append(img)
return new_imgs
def denormalize(img):
img *= [0.229, 0.224, 0.225]
img += [0.485, 0.456, 0.406]
img *= 255
return img.astype('uint8')
def next_batch(batch_size, names):
b = np.random.randint(0, len(names), [batch_size])
_names = names[b]
imgs = []
targets15 = []
targets14 = []
targets13 = []
targets12 = []
targets11 = []
targets10 = []
for name in _names:
imgs.append(np.asarray(Image.open(name+'.jpg')))
target10, target11, target12, target13, target14 = pickle.load(open(name+'.pkl','rb'))
targets15.append(np.reshape(np.sum(target14), [1,1,1]))
targets14.append(target14)
targets13.append(target13)
targets12.append(target12)
targets11.append(target11)
targets10.append(target10)
targets = [targets15, targets14, targets13, targets12, targets11, targets10]
return np.array(normalize(imgs)), targets