-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_dist_preds.py
97 lines (81 loc) · 2.63 KB
/
calc_dist_preds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
from model.model_wrapper import Architecture_PL
import torch
import numpy as np
import pickle
from helpers.tools import *
from data.generator import load_deterministic_ds
import numpy as np
# Currently unused and unchecked. This is used to calculate distributions for every link. (appendix)
def get_link_dist(model, batch, window_size=100, samples=50):
model = model.eval()
inputs = batch
if model.corr_input:
in1 = inputs[0]
in2 = inputs[1]
else:
in1 = inputs
out = []
for x in range(samples):
ind = torch.randint(0, in1.shape[1] - window_size, (1,))
if model.corr_input:
y_ = model([in1[:, ind : ind + window_size].detach(), in2.detach()])
else:
y_ = model(in1[:, ind : ind + window_size].detach())
out.append(y_.detach().numpy())
result = np.stack(out, axis=0)
return result
def main():
parser = argparse.ArgumentParser()
# This is the best transformer of the exp 2 /big grid search
parser.add_argument(
"--path",
default="pretrained_weights/transformer.ckpt",
)
parser.add_argument("--dataset", default="XLNL")
parser.add_argument("--s", default=100, type=int) # all additional
parser.add_argument("--bs", default=500, type=int) # batchsize
parser.add_argument("--ws", default=100, type=int) # subsample size of timeseries
args = parser.parse_args()
model = Architecture_PL.load_from_checkpoint(args.path)
M = model.model
M = M.to("cpu")
M = M.eval()
tr, val, te = load_deterministic_ds(
args.dataset, corr_input=M.corr_input, batch_size=args.bs
)
out = {}
print("tr")
# one batch is enough for now.
X, Y = next(iter(tr))
preds = get_link_dist(
M,
X.detach() if not M.corr_input else (X[0].detach(), X[1].detach()),
samples=args.s,
window_size=args.ws,
)
out["tr"] = [preds, Y]
print("te")
X, Y = next(iter(te))
preds = get_link_dist(
M,
X.detach() if not M.corr_input else (X[0].detach(), X[1].detach()),
samples=args.s,
window_size=args.ws,
)
out["test"] = [preds, Y]
print("te2")
tr, val, te = load_deterministic_ds(
args.dataset + "_additional", corr_input=M.corr_input, batch_size=args.bs
)
X, Y = next(iter(te))
preds = get_link_dist(
M,
X.detach() if not M.corr_input else (X[0].detach(), X[1].detach()),
samples=args.s,
window_size=args.ws,
)
out["test2"] = [preds, Y]
pickle.dump(out, open("scores/dist_preds_ablation_2.p", "wb"))
if __name__ == "__main__":
main()