-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
56 lines (42 loc) · 2.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import hydra
import lightning.pytorch as pl
import utils
from lightning.pytorch import LightningDataModule, LightningModule, Trainer
from lightning.pytorch.loggers import TensorBoardLogger
from omegaconf import DictConfig
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from lightning.pytorch.callbacks import LearningRateMonitor,RichModelSummary,RichProgressBar, ModelCheckpoint
@utils.task_wrapper
def train(cfg: DictConfig) -> tuple[dict, dict]:
if cfg.get("seed"):
pl.seed_everything(cfg.seed)
data_module: LightningDataModule = hydra.utils.instantiate(cfg.data)
model: LightningModule = hydra.utils.instantiate(cfg.model)
logger: TensorBoardLogger = hydra.utils.instantiate(cfg.tensorboard)
logger.log_hyperparams(cfg)
checkpoint_callback = ModelCheckpoint(dirpath=cfg.tensorboard.save_dir, save_top_k=1, monitor="val_loss", save_last=True)
# Callbacks
es = EarlyStopping(monitor='val_loss', # not quite sure what is the best here...
patience=cfg.early_stopping.patience,
min_delta=cfg.early_stopping.min_delta, mode='min')
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger,strategy='ddp_find_unused_parameters_true',
callbacks=[es,
lr_monitor,
checkpoint_callback,
RichModelSummary(),
RichProgressBar()], devices=-1)
object_dict = {"cfg": cfg, "datamodule": data_module, "model": model, "logger": logger, "trainer": trainer}
trainer.fit(model=model, datamodule=data_module)
train_metrics = trainer.callback_metrics
trainer.test(model=model, datamodule=data_module)
test_metrics = trainer.callback_metrics
return {**train_metrics, **test_metrics}, object_dict
@hydra.main(version_base="1.3", config_path="config", config_name="train.yaml")
def main(cfg: DictConfig):
utils.extras(cfg)
metric_dict, _ = train(cfg)
utils.test_dict_to_csv(metric_dict,cfg)
return utils.get_metric_value(metric_dict=metric_dict, metric_name=cfg.get("optimized_metric"))
if __name__ == '__main__':
main()