-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict.py
69 lines (55 loc) · 1.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import cv2
import paddle
from GeoTr import GeoTr
from utils import to_image, to_tensor
def run(args):
image_path = args.image
model_path = args.model
output_path = args.output
checkpoint = paddle.load(model_path)
state_dict = checkpoint["model"]
model = GeoTr()
model.set_state_dict(state_dict)
model.eval()
img_org = cv2.imread(image_path)
img = cv2.resize(img_org, (288, 288))
x = to_tensor(img)
y = to_tensor(img_org)
bm = model(x)
bm = paddle.nn.functional.interpolate(
bm, y.shape[2:], mode="bilinear", align_corners=False
)
bm_nhwc = bm.transpose([0, 2, 3, 1])
out = paddle.nn.functional.grid_sample(y, (bm_nhwc / 288 - 0.5) * 2)
out_image = to_image(out)
cv2.imwrite(output_path, out_image)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="predict")
parser.add_argument(
"--image",
"-i",
nargs="?",
type=str,
default="",
help="The path of image",
)
parser.add_argument(
"--model",
"-m",
nargs="?",
type=str,
default="",
help="The path of model",
)
parser.add_argument(
"--output",
"-o",
nargs="?",
type=str,
default="",
help="The path of output",
)
args = parser.parse_args()
print(args)
run(args)