-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscratch.py
486 lines (403 loc) · 18.1 KB
/
scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#!/usr/bin/env python
# coding=utf-8
import sys
import os
import time
import shutil
import socket
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import models, transforms
from torch.optim.optimizer import Optimizer
from collections import defaultdict
from datetime import timedelta
from configparser import ConfigParser
sys.path.insert(0,os.path.join(os.path.expanduser('~'),'utilsCIL'))
sys.path.insert(0,os.path.join(os.path.expanduser('~'),'FeTrIL'))
from AverageMeter import AverageMeter
from MyImageFolder import ImagesListFileFolder
from Utils import DataUtils
import lucir_models.modified_resnet as modified_resnet
# This file is the part of FeTrIL used to train the feature extractor and extract features from the training and test sets.
# It is divided into three parts: the first two parts are used to train the feature extractor (first using the LUCIR code, https://openaccess.thecvf.com/content_CVPR_2019/papers/Hou_Learning_a_Unified_Classifier_Incrementally_via_Rebalancing_CVPR_2019_paper.pdf, and then finetune it using AugMix transforms (https://arxiv.org/pdf/1912.02781.pdf) and Lookahead (https://arxiv.org/pdf/1907.08610.pdf)), and the second part is used to extract features from the training and test sets.
# Some parameters are hardcoded since it is not the main contribution of this work, but the code is provided for completeness.
def merge_images_labels(images, labels):
images = list(images)
labels = list(labels)
assert(len(images)==len(labels))
imgs = []
for i in range(len(images)):
item = (images[i], labels[i])
imgs.append(item)
return imgs
if len(sys.argv) != 2:
print('Arguments: config')
sys.exit(-1)
cp = ConfigParser()
with open(sys.argv[1]) as fh:
cp.read_file(fh)
cp = cp['config']
nb_classes = int(cp['nb_classes'])
normalization_dataset_name = cp['dataset']
first_batch_size = int(cp["first_batch_size"])
il_states = int(cp["il_states"])
feat_root = cp["feat_root"]
list_root = cp["list_root"]
model_root = cp["model_root"]
random_seed = int(cp["random_seed"])
num_workers = int(cp['num_workers'])
epochs_lucir = int(cp['epochs_lucir'])
epochs_augmix_ft = int(cp['epochs_augmix_ft'])
B = first_batch_size
datasets_mean_std_file_path = cp["mean_std"]
output_dir = os.path.join(model_root,normalization_dataset_name,"seed"+str(random_seed),"b"+str(first_batch_size))
train_file_path = os.path.join(list_root,normalization_dataset_name,"train.lst")
test_file_path = os.path.join(list_root,normalization_dataset_name,"test.lst")
utils = DataUtils()
train_batch_size = 128
test_batch_size = 50
eval_batch_size = 128
base_lr = 0.1
lr_strat = [30, 60]
lr_factor = 0.1
custom_weight_decay = 0.0001
custom_momentum = 0.9
epochs = epochs_lucir
print("Running on " + str(socket.gethostname()) + " | " + str(os.environ["CUDA_VISIBLE_DEVICES"]) + '\n')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataset_mean, dataset_std = utils.get_dataset_mean_std(normalization_dataset_name, datasets_mean_std_file_path)
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
top = min(5, B)
trainset = ImagesListFileFolder(
train_file_path,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(B))
testset = ImagesListFileFolder(
test_file_path,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(B))
X_train_total, Y_train_total = np.array(trainset.imgs), np.array(trainset.targets)
X_valid_total, Y_valid_total = np.array(testset.imgs), np.array(testset.targets)
# the order is already shuffled by our custom loader
order_list = list(range(B))
X_valid_cumuls = []
X_protoset_cumuls = []
X_train_cumuls = []
Y_valid_cumuls = []
Y_protoset_cumuls = []
Y_train_cumuls = []
tg_model = modified_resnet.resnet18(num_classes=B)
in_features = tg_model.fc.in_features
out_features = tg_model.fc.out_features
print("in_features:", in_features, "out_features:", out_features)
X_train = X_train_total
X_valid = X_valid_total
X_valid_cumuls.append(X_valid)
X_train_cumuls.append(X_train)
X_valid_cumul = np.concatenate(X_valid_cumuls)
X_train_cumul = np.concatenate(X_train_cumuls)
Y_train = Y_train_total
Y_valid = Y_valid_total
Y_valid_cumuls.append(Y_valid)
Y_train_cumuls.append(Y_train)
Y_valid_cumul = np.concatenate(Y_valid_cumuls)
Y_train_cumul = np.concatenate(Y_train_cumuls)
X_valid_ori = X_valid
Y_valid_ori = Y_valid
map_Y_train = np.array([order_list.index(i) for i in Y_train])
map_Y_valid_cumul = np.array([order_list.index(i) for i in Y_valid_cumul])
current_train_imgs = merge_images_labels(X_train, map_Y_train)
trainset.imgs = trainset.samples = current_train_imgs
trainloader = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
print('Training-set size = ' + str(len(trainset)))
current_test_imgs = merge_images_labels(X_valid_cumul, map_Y_valid_cumul)
testset.imgs = testset.samples = current_test_imgs
testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size,
shuffle=False, num_workers=num_workers)
print('Max and Min of train labels: {}, {}'.format(min(map_Y_train), max(map_Y_train)))
print('Max and Min of valid labels: {}, {}'.format(min(map_Y_valid_cumul), max(map_Y_valid_cumul)))
ckp_name = os.path.join(output_dir,'lucir_scratch.pth')
print('ckp_name', ckp_name)
tg_params = tg_model.parameters()
tg_model = tg_model.to(device)
tg_optimizer = optim.SGD(tg_params, lr=base_lr, momentum=custom_momentum, weight_decay=custom_weight_decay)
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=lr_strat, gamma=lr_factor)
for epoch in range(epochs):
tg_model.train()
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
tg_optimizer.zero_grad()
outputs = tg_model(inputs)
loss = nn.CrossEntropyLoss()(outputs, targets)
loss.backward()
tg_optimizer.step()
tg_lr_scheduler.step()
# eval
top1 = AverageMeter()
top5 = AverageMeter()
tg_model.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = tg_model(inputs)
prec1, prec5 = utils.accuracy(outputs.data, targets, topk=(1, top))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
print('{:03}/{:03} | Test ({}) | acc@1 = {:.2f} | acc@{} = {:.2f}'.format(
epoch+1, epochs, len(testloader), top1.avg, top, top5.avg))
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
torch.save(tg_model.state_dict(), ckp_name)
ckp_name = os.path.join(output_dir,'lucir_scratch.pth')
# now we need to finetune the model with the augmix
epochs = epochs_augmix_ft
batch_size=64
lr=0.01
momentum = 0.9
weight_decay=0.0001
lrd=10
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Lookahead(Optimizer):
r"""PyTorch implementation of the lookahead wrapper.
Lookahead Optimizer: https://arxiv.org/abs/1907.08610
"""
def __init__(self, optimizer, la_steps=5, la_alpha=0.8, pullback_momentum="none"):
"""optimizer: inner optimizer
la_steps (int): number of lookahead steps
la_alpha (float): linear interpolation factor. 1.0 recovers the inner optimizer.
pullback_momentum (str): change to inner optimizer momentum on interpolation update
"""
self.optimizer = optimizer
self._la_step = 0 # counter for inner optimizer
self.la_alpha = la_alpha
self._total_la_steps = la_steps
pullback_momentum = pullback_momentum.lower()
assert pullback_momentum in ["reset", "pullback", "none"]
self.pullback_momentum = pullback_momentum
self.state = defaultdict(dict)
# Cache the current optimizer parameters
for group in optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['cached_params'] = torch.zeros_like(p.data)
param_state['cached_params'].copy_(p.data)
if self.pullback_momentum == "pullback":
param_state['cached_mom'] = torch.zeros_like(p.data)
def __getstate__(self):
return {
'state': self.state,
'optimizer': self.optimizer,
'la_alpha': self.la_alpha,
'_la_step': self._la_step,
'_total_la_steps': self._total_la_steps,
'pullback_momentum': self.pullback_momentum
}
def zero_grad(self):
self.optimizer.zero_grad()
def get_la_step(self):
return self._la_step
def state_dict(self):
return self.optimizer.state_dict()
def load_state_dict(self, state_dict):
self.optimizer.load_state_dict(state_dict)
def _backup_and_load_cache(self):
"""Useful for performing evaluation on the slow weights (which typically generalize better)
"""
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['backup_params'] = torch.zeros_like(p.data)
param_state['backup_params'].copy_(p.data)
p.data.copy_(param_state['cached_params'])
def _clear_and_load_backup(self):
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
p.data.copy_(param_state['backup_params'])
del param_state['backup_params']
@property
def param_groups(self):
return self.optimizer.param_groups
def step(self, closure=None):
"""Performs a single Lookahead optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = self.optimizer.step(closure)
self._la_step += 1
if self._la_step >= self._total_la_steps:
self._la_step = 0
# Lookahead and cache the current optimizer parameters
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
p.data.mul_(self.la_alpha).add_(param_state['cached_params'], alpha=1.0 - self.la_alpha) # crucial line
param_state['cached_params'].copy_(p.data)
if self.pullback_momentum == "pullback":
internal_momentum = self.optimizer.state[p]["momentum_buffer"]
self.optimizer.state[p]["momentum_buffer"] = internal_momentum.mul_(self.la_alpha).add_(
1.0 - self.la_alpha, param_state["cached_mom"])
param_state["cached_mom"] = self.optimizer.state[p]["momentum_buffer"]
elif self.pullback_momentum == "reset":
self.optimizer.state[p]["momentum_buffer"] = torch.zeros_like(p.data)
return loss
if device is not None:
print("Use GPU: {} for training".format(device))
# instantiate a ResNet18 model
model = models.resnet18()
tg_model_state_dict = torch.load(ckp_name)
print("Loading lucir_model from {}".format(ckp_name))
state_dict = tg_model_state_dict
for key in list(state_dict.keys()):
if key.startswith('fc'):
del state_dict[key]
model.fc = nn.Linear(512, B)
model.load_state_dict(state_dict, strict=False)
print('modele charge')
model.cuda(device)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(device)
optimizer = torch.optim.SGD(model.parameters(), lr,
momentum=momentum,
weight_decay=weight_decay)
optimizer = Lookahead(optimizer)
train_dataset = ImagesListFileFolder(
train_file_path,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.AugMix(severity=5,chain_depth=7),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(B))
val_dataset = ImagesListFileFolder(
test_file_path,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(B))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=False)
print('Classes number = {}'.format(len(train_dataset.classes)))
print('Training dataset size = {}'.format(len(train_dataset)))
print('Validation dataset size = {}'.format(len(val_dataset)))
def adjust_learning_rate(optimizer, epoch, lr):
if epoch==80 or epoch==120:
lr = lr * 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('\nstarting training...')
start = time.time()
for epoch in range(epochs):
adjust_learning_rate(optimizer, epoch, lr)
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.train()
for i, (input, target) in enumerate(train_loader):
if device is not None:
input = input.cuda(device)
target = target.cuda(device)
output = model(input)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
end = time.time()
epoch_time = timedelta(seconds=round(end - start))
print('{:03}/{:03} | Train ({}) | acc@1 = {:.2f} | acc@{} = {:.2f} | loss = {:.4f}'.format(
epoch+1, epochs, len(train_loader), top1.avg, top, top5.avg, losses.avg))
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(val_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
prec1, prec5 = utils.accuracy(outputs.data, targets, topk=(1, top))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
print(' | Test ({})'.format(len(val_loader))+' '*(len(str(len(train_loader)))-len(str(len(val_loader))))+' | acc@1 = {:.2f} | acc@{} = {:.2f}'.format(top1.avg, top, top5.avg))
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
ckp_name = os.path.join(output_dir,'scratch.pth')
torch.save(model, ckp_name)
def features_extraction(features_model, loader, root_path, gpu):
features_model = features_model.cuda(gpu)
features_model.eval()
try:
print('cleaning',root_path,'...')
shutil.rmtree(root_path)
except:
pass
os.makedirs(root_path, exist_ok=True)
last_class = -1
for i, (inputs, labels) in enumerate(loader):
inputs = inputs.cuda(gpu)
features = features_model(inputs)
lablist=labels.tolist()
featlist=features.tolist()
for i in range(len(lablist)):
cu_class = lablist[i]
if cu_class!=last_class:
last_class=cu_class
with open(os.path.join(root_path,str(cu_class)), 'a') as features_out:
features_out.write(str(' '.join([str(e[0][0]) for e in list(featlist[i])])) + '\n')
# now we extract features from the model
train_dataset = ImagesListFileFolder(
train_file_path,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(nb_classes))
val_dataset = ImagesListFileFolder(
test_file_path,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), random_seed=random_seed, range_classes=range(nb_classes))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, num_workers=num_workers, pin_memory=False, shuffle=False)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, num_workers=num_workers, pin_memory=False, shuffle=False)
train_features_path = os.path.join(output_dir,'train')
feat_dir_full = os.path.join(feat_root,normalization_dataset_name,"seed"+str(random_seed),"b"+str(first_batch_size))
train_features_path = os.path.join(feat_dir_full,'train')
val_features_path = os.path.join(feat_dir_full,'test')
feat_model = nn.Sequential(*list(model.children())[:-1])
features_extraction(feat_model, train_loader, train_features_path, device)
features_extraction(feat_model, val_loader, val_features_path, device)