-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.rs
130 lines (115 loc) · 4.44 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Future 是惰性的:除非驱动他们来完成,否则就什么都不做
// 一种驱动方式是在 async 函数里使用 .await,但这只是把问题推到了上一层面,所以需要一个执行者
// Future 执行者会获取一系列顶层的 Future,通过在 Future 可以有进展的时候调用 poll,来将这些
// Future 运行至完成
// 通常首先,执行者将 poll 一个 Future 一次来开始
// 当 Future 通过调用 wake 方法表示他们已经准备好取得进展时,他们就会比放到一个队列里,然后 poll
// 再次被调用,重复此操作直到 Future 完成
// 构建简单的执行者,可以运行大量的顶层 Future 来并发地完成
// 需要使用 futures crate 的 ArcWake trait
mod timer_future;
use futures::{
future::{BoxFuture, FutureExt},
task::{waker_ref, ArcWake},
};
use std::{
future::Future,
sync::mpsc::{sync_channel, Receiver, SyncSender},
sync::{Arc, Mutex},
task::Context,
time::Duration,
};
use timer_future::TimerFuture;
/// Task executor that receives tasks off of a channel and runs them.
struct Executor {
ready_queue: Receiver<Arc<Task>>,
}
impl Executor {
fn run(&self) {
while let Ok(task) = self.ready_queue.recv() {
// Take the future, and if it has not yet completed (is still Some),
// poll it in an attempt to complete it.
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {
// Create a `LocalWaker` from the task itself
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&*waker);
// `BoxFuture<T>` is a type alias for
// `Pin<Box<dyn Future<Output = T> + Send + 'static>>`.
// We can get a `Pin<&mut dyn Future + Send + 'static>`
// from it by calling the `Pin::as_mut` method.
if future.as_mut().poll(context).is_pending() {
// We're not done processing the future, so put it
// back in its task to be run again in the future.
*future_slot = Some(future);
}
}
}
}
}
/// `Spawner` spawns new futures onto the task channel.
#[derive(Clone)]
struct Spawner {
task_sender: SyncSender<Arc<Task>>,
}
impl Spawner {
fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {
let future = future.boxed();
let task = Arc::new(Task {
future: Mutex::new(Some(future)),
task_sender: self.task_sender.clone(),
});
self.task_sender.send(task).expect("too many tasks queued");
}
}
/// A future that can reschedule itself to be polled by an `Executor`.
struct Task {
/// In-progress future that should be pushed to completion.
///
/// The `Mutex` is not necessary for correctness, since we only have
/// one thread executing tasks at once. However, Rust isn't smart
/// enough to know that `future` is only mutated from one thread,
/// so we need to use the `Mutex` to prove thread-safety. A production
/// executor would not need this, and could use `UnsafeCell` instead.
future: Mutex<Option<BoxFuture<'static, ()>>>,
/// Handle to place the task itself back onto the task queue.
task_sender: SyncSender<Arc<Task>>,
}
impl ArcWake for Task {
fn wake_by_ref(arc_self: &Arc<Self>) {
// Implement `wake` by sending this task back onto the task channel
// so that it will be polled again by the executor.
let cloned = arc_self.clone();
arc_self
.task_sender
.send(cloned)
.expect("too many tasks queued");
}
}
fn new_executor_and_spawner() -> (Executor, Spawner) {
// Maximum number of tasks to allow queueing in the channel at once.
// This is just to make `sync_channel` happy, and wouldn't be present in
// a real executor.
const MAX_QUEUED_TASKS: usize = 10_000;
let (task_sender, ready_queue) = sync_channel(MAX_QUEUED_TASKS);
(Executor { ready_queue }, Spawner { task_sender })
}
fn example() {
let (executor, spawner) = new_executor_and_spawner();
// Spawn a task to print before and after waiting on a timer.
spawner.spawn(async {
println!("howdy!");
// Wait for our timer future to complete after two seconds.
TimerFuture::new(Duration::new(2, 0)).await;
println!("done!");
});
// Drop the spawner so that our executor knows it is finished and won't
// receive more incoming tasks to run.
drop(spawner);
// Run the executor until the task queue is empty.
// This will print "howdy!", pause, and then print "done!".
executor.run();
}
fn main() {
example();
}