-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathpredict.py
58 lines (43 loc) · 1.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pickle
import torch
from tqdm import tqdm
from scipy.io import wavfile
import argparse
import numpy as np
import os
from model import PedalNet
def save(name, data):
wavfile.write(name, 44100, data.flatten().astype(np.float32))
@torch.no_grad()
def predict(args):
model = PedalNet.load_from_checkpoint(args.model)
model.eval()
train_data = pickle.load(open(os.path.dirname(args.model) + "/data.pickle", "rb"))
mean, std = train_data["mean"], train_data["std"]
in_rate, in_data = wavfile.read(args.input)
assert in_rate == 44100, "input data needs to be 44.1 kHz"
sample_size = int(in_rate * args.sample_time)
length = len(in_data) - len(in_data) % sample_size
# split into samples
in_data = in_data[:length].reshape((-1, 1, sample_size)).astype(np.float32)
# standardize
in_data = (in_data - mean) / std
# pad each sample with previous sample
prev_sample = np.concatenate((np.zeros_like(in_data[0:1]), in_data[:-1]), axis=0)
pad_in_data = np.concatenate((prev_sample, in_data), axis=2)
pred = []
batches = pad_in_data.shape[0] // args.batch_size
for x in tqdm(np.array_split(pad_in_data, batches)):
pred.append(model(torch.from_numpy(x)).numpy())
pred = np.concatenate(pred)
pred = pred[:, :, -in_data.shape[2] :]
save(args.output, pred)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="models/pedalnet/pedalnet.ckpt")
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--sample_time", type=float, default=100e-3)
parser.add_argument("input")
parser.add_argument("output")
args = parser.parse_args()
predict(args)