-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGen_Framework.py
350 lines (296 loc) · 18.6 KB
/
Gen_Framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import copy
import logging
import time
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
from baukit import TraceDict
from transformers import StoppingCriteria, StoppingCriteriaList
import torch
from transformers import LlamaForCausalLM
from utils import ModelBase, intervention_mode2list, sv_format_length
from typing import List, Iterable
from state_vector_extract import extract_icl_sv, multi_extract_icl_sv
GLOBAL_USE_CACHE=True
class StoppingCriteriaSub(StoppingCriteria):
# only for beam 1 search
def __init__(self, stop_seqs:List[torch.Tensor]=[], input_len=0):
super().__init__()
self.stop_seqs = stop_seqs # stop ids
self.input_len = input_len
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop_ids in self.stop_seqs:
if input_ids.shape[1] - self.input_len < len(stop_ids): continue
stop_count = (stop_ids != input_ids[0, -len(stop_ids):]).sum()
if stop_count == 0:
return True
return False
# class NoRepeatNGramLogitsProcessor(StoppingCriteria):
#
# def __init__(self, ngram_size: int):
# if not isinstance(ngram_size, int) or ngram_size <= 0:
# raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
# self.ngram_size = ngram_size
#
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
# num_batch_hypotheses = scores.shape[0]
# cur_len = input_ids.shape[-1]
# banned_batch_tokens = self._calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
#
# if len(banned_batch_tokens) > 0:
# return True
# return False
#
# def _get_ngrams(self, ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
# generated_ngrams = [{} for _ in range(num_hypos)]
# for idx in range(num_hypos):
# gen_tokens = prev_input_ids[idx].tolist()
# generated_ngram = generated_ngrams[idx]
# for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
# prev_ngram_tuple = tuple(ngram[:-1])
# generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
# return generated_ngrams
#
# def _get_generated_ngrams(self, banned_ngrams, prev_input_ids, ngram_size, cur_len):
# # Before decoding the next token, prevent decoding of ngrams that have already appeared
# start_idx = cur_len + 1 - ngram_size
# ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
# return banned_ngrams.get(ngram_idx, [])
#
# def _calc_banned_ngram_tokens(
# self, ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
# ) -> List[Iterable[int]]:
# """Copied from fairseq for no_repeat_ngram in beam_search"""
# if cur_len + 1 < ngram_size:
# # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
# return [[] for _ in range(num_hypos)]
#
# generated_ngrams = self._get_ngrams(ngram_size, prev_input_ids, num_hypos)
#
# banned_tokens = [
# self._get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
# for hypo_idx in range(num_hypos)
# ]
# return banned_tokens
class ModelFramework(ModelBase):
def __init__(self, config):
super().__init__(config)
def generate_chche(self, demon:List=None, format_dict={'eos': '\n\n', 'proj_tokens': '→'}):
input_ids, input_mask = sv_format_length(self.tokenizer, None, None, demon, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
with torch.no_grad():
output = self.model(input_ids, return_dict=True)
return output['past_key_values']
def prior_ICL_generation(self, question, demon: List, prior_token_num, interventation_layer ,state_vector=None, past_key_values=None, gen_kwargs: dict = None, format_dict={'eos': '\n\n', 'proj_tokens': '→'}, return_generate_time=False):
if gen_kwargs is None: gen_kwargs = {}
else: gen_kwargs = copy.deepcopy(gen_kwargs)
# ------------ first generation ------------
first_stage_gen_kwargs = copy.deepcopy(gen_kwargs)
if past_key_values is not None:
first_stage_gen_kwargs["past_key_values"] = past_key_values
input_ids, input_mask = sv_format_length(self.tokenizer, question, None, demon, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
if prior_token_num != 0:
first_stage_gen_kwargs['max_new_tokens'] = prior_token_num
if 'max_new_tokens' in gen_kwargs: gen_kwargs['max_new_tokens'] = gen_kwargs['max_new_tokens'] - prior_token_num
if 'max_length' not in first_stage_gen_kwargs: first_stage_gen_kwargs['max_length'] = self.tokenizer.model_max_length
first_stage_gen_kwargs['max_length'] = min(first_stage_gen_kwargs['max_length'],input_ids.shape[-1] + first_stage_gen_kwargs.pop("max_new_tokens"))
if 'eos_token_id' not in first_stage_gen_kwargs: first_stage_gen_kwargs['eos_token_id'] = [self.tokenizer.eos_token_id]
eos_token_id = first_stage_gen_kwargs.pop('eos_token_id')
if len(eos_token_id):
first_stage_gen_kwargs["stopping_criteria"] = StoppingCriteriaList([StoppingCriteriaSub(
stop_seqs=[torch.tensor(eos_token_id, dtype=torch.long, device=input_ids.device)],
input_len=input_ids.shape[1])]
)
stime1 = time.time()
with torch.no_grad():
outputs = self.model.generate(input_ids=input_ids,
use_cache=GLOBAL_USE_CACHE,
return_dict_in_generate=True,
**first_stage_gen_kwargs)
etime1 = time.time()
sequences = outputs.sequences
is_first_stage_end = sequences[0, -len(eos_token_id)].tolist() == eos_token_id
prior_ids = sequences[:, input_ids.shape[1]:]
inp_sequences = self.tokenizer.decode(sequences[0, :input_ids.shape[1]].tolist(), skip_special_tokens=False)
gen_sequences = sequences[0, input_ids.shape[1]:].tolist()
while gen_sequences[-len(eos_token_id):] == eos_token_id: gen_sequences = gen_sequences[:-len(eos_token_id)]
gen_sequences = self.tokenizer.decode(gen_sequences, skip_special_tokens=False)
# print('[输入1]')
# print(inp_sequences)
print('[输出1]')
print(gen_sequences)
if is_first_stage_end:
print('[WARNING] First stage end')
if return_generate_time:
return inp_sequences, gen_sequences, etime1-stime1
return inp_sequences, gen_sequences
else:
prior_ids = torch.tensor([[]], dtype=input_ids.dtype, device=input_ids.device)
# state vector
if state_vector is None:
if past_key_values is not None:
input_ids = input_ids[:, past_key_values[0][0].shape[2]:]
input_mask = input_mask[past_key_values[0][0].shape[2]:]
layer_hook_names = intervention_mode2list("Wo", interventation_layer, prefix="")
with torch.no_grad():
with TraceDict(self.model, layers=layer_hook_names, clone=False, detach=False, retain_input=False, retain_output=True) as activations_td:
logits = self.model(input_ids, past_key_values=past_key_values).logits.cpu()
hook_input = {l: activations_td[l].output[0].cpu() for l in layer_hook_names}
proj_name = f"project"
indices = torch.tensor([i for i in range(len(input_mask)) if input_mask[i] == proj_name],dtype=torch.long)
state_vector = {k: v[indices] for k, v in hook_input.items()}
# second generation
input_ids, input_mask = sv_format_length(self.tokenizer, question, None, None, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
input_ids = torch.cat((input_ids, prior_ids), dim=-1)
if 'max_length' not in gen_kwargs: gen_kwargs['max_length'] = self.tokenizer.model_max_length
if 'max_new_tokens' in gen_kwargs: gen_kwargs['max_length'] = min(gen_kwargs['max_length'], input_ids.shape[-1] + gen_kwargs.pop("max_new_tokens"))
if 'eos_token_id' not in gen_kwargs: gen_kwargs['eos_token_id'] = [self.tokenizer.eos_token_id]
eos_token_id = gen_kwargs.pop('eos_token_id')
if len(eos_token_id):
gen_kwargs["stopping_criteria"] = StoppingCriteriaList([StoppingCriteriaSub(
stop_seqs=[torch.tensor(eos_token_id, dtype=torch.long, device=input_ids.device)],
input_len=input_ids.shape[1])]
)
layer_indices = torch.cat(
[
torch.tensor([i for i in range(len(input_mask)) if input_mask[i] == wp], dtype=torch.long)
for wp in ["project"]
], dim=0
)
layer_hook_names = list(state_vector.keys())
intervention_fn = self.intervention_function(state_vector, layer_indices, layer_hook_names)
stime2 = time.time()
with torch.no_grad():
with TraceDict(self.model, layers=layer_hook_names, clone=False, detach=False, retain_input=False,retain_output=False, edit_output=intervention_fn) as activations_td:
outputs = self.model.generate(input_ids=input_ids,
use_cache=GLOBAL_USE_CACHE,
return_dict_in_generate=True,
**gen_kwargs)
etime2 = time.time()
sequences = outputs.sequences
inp_sequences = self.tokenizer.decode(sequences[0, :input_ids.shape[1] - prior_ids.shape[1]].tolist(), skip_special_tokens=False)
gen_sequences = sequences[0, input_ids.shape[1] - prior_ids.shape[1]:].tolist()
while gen_sequences[-len(eos_token_id):] == eos_token_id: gen_sequences = gen_sequences[:-len(eos_token_id)]
gen_sequences = self.tokenizer.decode(gen_sequences, skip_special_tokens=False)
# print('[输入2]')
# print(inp_sequences)
print('[输出2]')
print(gen_sequences)
if return_generate_time:
return inp_sequences, gen_sequences, etime1 - stime1 + etime2 - stime2
return inp_sequences, gen_sequences
def pure_prior_ICL_generation(self, question, demon: List, prior_token_num, past_key_values=None, gen_kwargs: dict = None, format_dict={'eos': '\n\n', 'proj_tokens': '→'}, return_generate_time=False):
if gen_kwargs is None: gen_kwargs = {}
else: gen_kwargs = copy.deepcopy(gen_kwargs)
# ------------ first generation ------------
first_stage_gen_kwargs = copy.deepcopy(gen_kwargs)
if past_key_values is not None:
first_stage_gen_kwargs["past_key_values"] = past_key_values
input_ids, input_mask = sv_format_length(self.tokenizer, question, None, demon, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
first_stage_gen_kwargs['max_new_tokens'] = prior_token_num
if 'max_new_tokens' in gen_kwargs: gen_kwargs['max_new_tokens'] = gen_kwargs['max_new_tokens'] - prior_token_num
if 'max_length' not in first_stage_gen_kwargs: first_stage_gen_kwargs['max_length'] = self.tokenizer.model_max_length
first_stage_gen_kwargs['max_length'] = min(first_stage_gen_kwargs['max_length'],input_ids.shape[-1] + first_stage_gen_kwargs.pop("max_new_tokens"))
if 'eos_token_id' not in first_stage_gen_kwargs: first_stage_gen_kwargs['eos_token_id'] = [self.tokenizer.eos_token_id]
eos_token_id = first_stage_gen_kwargs.pop('eos_token_id')
if len(eos_token_id):
first_stage_gen_kwargs["stopping_criteria"] = StoppingCriteriaList([StoppingCriteriaSub(
stop_seqs=[torch.tensor(eos_token_id, dtype=torch.long, device=input_ids.device)],
input_len=input_ids.shape[1])]
)
stime1 = time.time()
with torch.no_grad():
outputs = self.model.generate(input_ids=input_ids,
use_cache=GLOBAL_USE_CACHE,
return_dict_in_generate=True,
**first_stage_gen_kwargs)
etime1 = time.time()
sequences = outputs.sequences
is_first_stage_end = sequences[0, -len(eos_token_id)].tolist() == eos_token_id
prior_ids = sequences[:, input_ids.shape[1]:]
inp_sequences = self.tokenizer.decode(sequences[0, :input_ids.shape[1]].tolist(), skip_special_tokens=False)
gen_sequences = sequences[0, input_ids.shape[1]:].tolist()
while gen_sequences[-len(eos_token_id):] == eos_token_id: gen_sequences = gen_sequences[:-len(eos_token_id)]
gen_sequences = self.tokenizer.decode(gen_sequences, skip_special_tokens=False)
# print('[输入1]')
# print(inp_sequences)
print('[输出1]')
print(gen_sequences)
if is_first_stage_end:
print('[WARNING] First stage end')
if return_generate_time:
return inp_sequences, gen_sequences, etime1-stime1
return inp_sequences, gen_sequences
# second generation
input_ids, input_mask = sv_format_length(self.tokenizer, question, None, None, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
input_ids = torch.cat((input_ids, prior_ids), dim=-1)
if 'max_length' not in gen_kwargs: gen_kwargs['max_length'] = self.tokenizer.model_max_length
if 'max_new_tokens' in gen_kwargs: gen_kwargs['max_length'] = min(gen_kwargs['max_length'], input_ids.shape[-1] + gen_kwargs.pop("max_new_tokens"))
if 'eos_token_id' not in gen_kwargs: gen_kwargs['eos_token_id'] = [self.tokenizer.eos_token_id]
eos_token_id = gen_kwargs.pop('eos_token_id')
if len(eos_token_id):
gen_kwargs["stopping_criteria"] = StoppingCriteriaList([StoppingCriteriaSub(
stop_seqs=[torch.tensor(eos_token_id, dtype=torch.long, device=input_ids.device)],
input_len=input_ids.shape[1])]
)
stime2 = time.time()
with torch.no_grad():
outputs = self.model.generate(input_ids=input_ids,
use_cache=GLOBAL_USE_CACHE,
return_dict_in_generate=True,
**gen_kwargs)
etime2 = time.time()
sequences = outputs.sequences
inp_sequences = self.tokenizer.decode(sequences[0, :input_ids.shape[1] - prior_ids.shape[1]].tolist(), skip_special_tokens=False)
gen_sequences = sequences[0, input_ids.shape[1] - prior_ids.shape[1]:].tolist()
while gen_sequences[-len(eos_token_id):] == eos_token_id: gen_sequences = gen_sequences[:-len(eos_token_id)]
gen_sequences = self.tokenizer.decode(gen_sequences, skip_special_tokens=False)
print('[输出2]')
print(gen_sequences)
if return_generate_time:
return inp_sequences, gen_sequences, etime1 - stime1 + etime2 - stime2
return inp_sequences, gen_sequences
def ICL_generation(self, question, demon: List, past_key_values=None, gen_kwargs: dict = None, format_dict={'eos': '\n\n', 'proj_tokens': '→'}, return_generate_time=False):
if gen_kwargs is None: gen_kwargs = {}
else: gen_kwargs = copy.deepcopy(gen_kwargs)
if past_key_values is not None:
gen_kwargs["past_key_values"] = past_key_values
input_ids, input_mask = sv_format_length(self.tokenizer, question, None, demon, max_len=self.tokenizer.model_max_length, **format_dict)
input_ids = input_ids.to(self.device)
if 'max_length' not in gen_kwargs: gen_kwargs['max_length'] = self.tokenizer.model_max_length
if 'max_new_tokens' in gen_kwargs: gen_kwargs['max_length'] = min(gen_kwargs['max_length'],input_ids.shape[-1] + gen_kwargs.pop("max_new_tokens"))
if 'eos_token_id' not in gen_kwargs: gen_kwargs['eos_token_id'] = [self.tokenizer.eos_token_id]
eos_token_id = gen_kwargs.pop('eos_token_id')
if len(eos_token_id):
gen_kwargs["stopping_criteria"] = StoppingCriteriaList([StoppingCriteriaSub(
stop_seqs=[torch.tensor(eos_token_id, dtype=torch.long, device=input_ids.device)],
input_len=input_ids.shape[1])]
)
stime = time.time()
with torch.no_grad():
outputs = self.model.generate(input_ids=input_ids,
use_cache=GLOBAL_USE_CACHE,
return_dict_in_generate=True,
**gen_kwargs)
etime = time.time()
sequences = outputs.sequences
inp_sequences = self.tokenizer.decode(sequences[0, :input_ids.shape[1]].tolist(), skip_special_tokens=False)
gen_sequences = sequences[0, input_ids.shape[1]:].tolist()
while gen_sequences[-len(eos_token_id):] == eos_token_id: gen_sequences = gen_sequences[:-len(eos_token_id)]
gen_sequences = self.tokenizer.decode(gen_sequences, skip_special_tokens=False)
if return_generate_time:
return inp_sequences, gen_sequences, etime-stime
return inp_sequences, gen_sequences
def intervention_function(self, state_vector, layer_indices, layer_hook_names, lam_old=0, lam_new=1):
def merge(output, layer_name):
nonlocal layer_hook_names
if layer_name in layer_hook_names:
activation = state_vector[layer_name].to(output.device) # bsz, head_num, vitural_token_num, head_dim
activation = activation.unsqueeze(0).expand(output.shape[0],-1,-1)
output[:, layer_indices] = lam_old * output[:, layer_indices] + lam_new * activation
layer_hook_names.remove(layer_name)
return output
layer_hook_names = copy.deepcopy(layer_hook_names)
return merge