-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
207 lines (171 loc) · 7.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import logging
import random
import numpy as np
import torch
import os
import transformers
from peft import PeftModel
from transformers import AutoTokenizer, LlamaTokenizer, LlamaForCausalLM, MistralForCausalLM
from typing import List
def set_seed(seed: int) -> None:
"""
Sets the seed to make everything deterministic, for reproducibility of experiments
Parameters:
seed: the number to set the seed to
Return: None
"""
# Random seed
random.seed(seed)
# Numpy seed
np.random.seed(seed)
# Torch seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
# os seed
os.environ['PYTHONHASHSEED'] = str(seed)
def intervention_mode2list(mode, layers, prefix=""):
if mode == 'Wo':
return [f'{prefix}model.layers.{i}.self_attn.o_proj' for i in range(layers)] + \
[f"{prefix}model.embed_tokens"]
else:
raise KeyError
def sv_format(
tokenizer,
query: str,
answer: str = None,
demon_list: List = None,
system: str = '',
proj_tokens: str = '→',
eos: str = None,
query_format:str=None,
demon_proj=None,
):
if demon_list is None: demon_list = []
if eos is None: eos = ''
if system is None: system = ''
if query_format is None: query_format = '{}'
if demon_proj is None: demon_proj = proj_tokens
SEP_TOKENS = [' ', '\n', '\t']
def tokenize(target_str, add_sep=True):
nonlocal sentence
if target_str is None or target_str == '': return []
if len(sentence) == 0 or sentence[-1] in SEP_TOKENS or target_str[0] in SEP_TOKENS or not add_sep:
target_str = target_str
else:
target_str = " " + target_str
source = tokenizer([sentence], truncation=False, padding=False, add_special_tokens=False, return_tensors="pt").input_ids
target = tokenizer([sentence + target_str], truncation=False, padding=False, add_special_tokens=False, return_tensors="pt").input_ids
assert (target[0, :len(source[0])] != source[0]).sum() == 0, f"sentence: {sentence}, target_str: {target_str}"
sentence += target_str
return target[0, len(source[0]):].tolist()
sentence = system
input_tokens = tokenizer(sentence, truncation=False, padding=False, add_special_tokens=True).input_ids
input_mask = ['bos'] + ['system'] * (len(input_tokens) - 1)
for r, (q, a) in enumerate(demon_list):
q = query_format.format(q.strip(' '))
input_tokens += tokenize(q)
input_mask += [f'query_{r}'] * (len(input_tokens) - len(input_mask))
input_tokens += tokenize(demon_proj)
input_mask += [f'project_{r}'] * (len(input_tokens) - len(input_mask))
input_tokens += tokenize(a.strip(' '))
input_mask += [f'answer_{r}'] * (len(input_tokens) - len(input_mask))
input_tokens += tokenize(eos, add_sep=False)
input_mask += [f'eos_{r}'] * (len(input_tokens) - len(input_mask))
if query is not None:
query = query_format.format(query.strip(' '))
input_tokens += tokenize(query)
input_mask += [f'query'] * (len(input_tokens) - len(input_mask))
input_tokens += tokenize(proj_tokens)
input_mask += [f'project'] * (len(input_tokens) - len(input_mask))
if answer:
input_tokens += tokenize(answer.strip(' '))
input_mask += [f'answer'] * (len(input_tokens) - len(input_mask))
input_ids = torch.tensor(input_tokens, dtype=torch.long).unsqueeze(0)
return input_ids, input_mask
def sv_format_length(
tokenizer,
query:str,
answer:str=None,
demon_list:List=None,
system:str='',
proj_tokens: str = '→',
eos: str = None,
query_format:str=None,
max_len:int=None,
reverse=True,
demon_proj=None,
):
if demon_list is None:
demon_list = []
if max_len is None:
max_len = tokenizer.model_max_length
if reverse:
for i in range(len(demon_list) + 1):
input_ids, input_mask = sv_format(tokenizer, query, answer, demon_list[i:], system, proj_tokens, eos, query_format, demon_proj)
if input_ids.shape[-1] > max_len:
if i == len(demon_list):
logging.info(f"[WARNING] zero-shot overflow!")
else:
if i != 0:
logging.info(f"[WARNING] {len(demon_list) - i}-shot overflow!")
break
else:
for i in range(len(demon_list),-1,-1):
input_ids, input_mask = sv_format(tokenizer, query, answer, demon_list[:i], system, proj_tokens, eos, query_format, demon_proj)
if input_ids.shape[-1] > max_len:
if i == 0:
logging.info(f"[WARNING] zero-shot overflow!")
else:
if i != len(demon_list):
logging.info(f"[WARNING] {i+1}-shot overflow!")
break
return input_ids, input_mask
class ModelBase:
def __init__(self, config):
self.model, self.tokenizer, self.device = self.load(config['model_path'], config)
def load(self, model_path, config):
tokenizer = AutoTokenizer.from_pretrained(model_path, truncation_side='left', padding_side='left', use_fast=False)
if config.get("model_max_length") is not None:
tokenizer.model_max_length = config.get("model_max_length")
logging.info(f'loading model from: {model_path}')
if config.get("device") is None:
device = 0
else:
device = eval(config.get("device"))
torch_dtype = torch.float32
model = transformers.AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch_dtype).to(device)
model.to(device)
model = model.eval()
logging.info(f'loading {type(model)} model done')
return model, tokenizer, device
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
past_key_values_length = past_key_values[0][0].shape[2]
input_ids = input_ids[:, past_key_values_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, past_key_values_length: ]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
LlamaForCausalLM.prepare_inputs_for_generation = prepare_inputs_for_generation
MistralForCausalLM.prepare_inputs_for_generation = prepare_inputs_for_generation