-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.R
66 lines (52 loc) · 2 KB
/
utils.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(OpenML)
library(mlr3pipelines)
library(future)
library(tidyverse)
library(lme4)
library(nloptr)
library(mlr3misc)
loadData<-function(seed = 2024){
# Checker dependencies og evt. installere disse
dependencies <- c("xts","sp","zoo","CASdatasets","splitTools")
md<-c()
for(dep in dependencies){
if(!require(eval(dep),character.only = T)){
md<-append(md,dep)
}
}
if(length(md)>0){
cat("The following dependencies have not been met:\n")
cat(paste(md),"\n")
answer<-tolower(readline(paste("Do you wish to install them? [y/N] : ")))
if(answer == "y"){
install.packages(md[md != "CASdatasets"])
if("CASdatasets" %in% md){
install.packages("CASdatasets", repos = "http://cas.uqam.ca/pub/", type="source")
}
}
library("splitTools","CASdatasets")
}
# Henter datasættene som beskrevet, men i funktionens enviroment istedet for det globale
data(freMPL1,envir = environment())
data(freMPL2,envir = environment())
data(freMPL3,envir = environment())
data(freMPL4,envir = environment())
freMPL3 <- subset( freMPL3 , select = -DeducType )
freMPL4 <- subset( freMPL4 , select = -DeducType )
freMPL <- rbind(freMPL1,freMPL2,freMPL3,freMPL4)
# For at mlr3 skal kunne omdanne freMPL eller train til task skal dates laves om til POSIXct
freMPL$RecordBeg<-as.POSIXct(freMPL$RecordBeg)
freMPL$RecordEnd<-as.POSIXct(freMPL$RecordEnd)
set.seed(seed)
# De relevante objekter skubbes ud til det globale enviroment
freMPL <<- freMPL
# vigtigt at bruge splitTools::partition da mlr3 overskriver partition, men kun acceptere class task
ind <<- splitTools::partition(freMPL$ClaimInd, p = c(train = 0.8, test = 0.2)) #### train and test have the same claim frequency
train <<- freMPL[ind$train, ]
test <<- freMPL[ind$test, ]
# Tømmer alt fra det funktionens enviroment, ie. de store dataset, som allerede er gemt i det globale enviroment
rm(list = ls())
}