-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdemo.py
executable file
·62 lines (48 loc) · 1.71 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#! /usr/bin/env python3
import argparse
import cv2
import matplotlib.pyplot as plot
import numpy as np
import chainer
from chainer import serializers
from lib import MultiBoxEncoder
from lib import preproc_for_test
from lib import SSD300
from lib import SSD512
from lib import VOCDataset
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--arch', choices=('300', '512'), default='300')
parser.add_argument('model')
parser.add_argument('image')
args = parser.parse_args()
if args.arch == '300':
model = SSD300(20)
elif args.arch == '512':
model = SSD512(20)
serializers.load_npz(args.model, model)
multibox_encoder = MultiBoxEncoder(model)
src = cv2.imread(args.image, cv2.IMREAD_COLOR)
image = preproc_for_test(src, model.insize, model.mean)
loc, conf = model(image[np.newaxis])
loc = chainer.cuda.to_cpu(loc.data)
conf = chainer.cuda.to_cpu(conf.data)
boxes, labels, scores = multibox_encoder.decode(
loc[0], conf[0], 0.45, 0.01)
figure = plot.figure()
ax = figure.add_subplot(111)
ax.imshow(src[:, :, ::-1])
for box, label, score in zip(boxes, labels, scores):
box[:2] *= src.shape[1::-1]
box[2:] *= src.shape[1::-1]
box = box.astype(int)
print(label + 1, score, *box)
if score > 0.6:
ax.add_patch(plot.Rectangle(
(box[0], box[1]), box[2] - box[0], box[3] - box[1],
fill=False, edgecolor='red', linewidth=3))
ax.text(
box[0], box[1],
'{:s}: {:0.2f}'.format(VOCDataset.labels[label], score),
bbox={'facecolor': 'white', 'alpha': 0.7, 'pad': 10})
plot.show()