-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomography.py
42 lines (35 loc) · 1.34 KB
/
homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from court_reference import CourtReference
import numpy as np
import cv2
from scipy.spatial import distance
court_ref = CourtReference()
refer_kps = np.array(court_ref.key_points, dtype=np.float32).reshape((-1, 1, 2))
court_conf_ind = {}
for i in range(len(court_ref.court_conf)):
conf = court_ref.court_conf[i+1]
inds = []
for j in range(4):
inds.append(court_ref.key_points.index(conf[j]))
court_conf_ind[i+1] = inds
def get_trans_matrix(points):
"""
Determine the best homography matrix from court points
"""
matrix_trans = None
dist_max = np.Inf
for conf_ind in range(1, 13):
conf = court_ref.court_conf[conf_ind]
inds = court_conf_ind[conf_ind]
inters = [points[inds[0]], points[inds[1]], points[inds[2]], points[inds[3]]]
if None not in inters:
matrix, _ = cv2.findHomography(np.float32(conf), np.float32(inters), method=0)
trans_kps = cv2.perspectiveTransform(refer_kps, matrix)
dists = []
for i in range(12):
if i not in inds and points[i] is not None:
dists.append(distance.euclidean(points[i], trans_kps[i]))
dist_median = np.mean(dists)
if dist_median < dist_max:
matrix_trans = matrix
dist_max = dist_median
return matrix_trans