forked from TensorSpeech/TensorFlowASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_conformer_from_weights.py
71 lines (53 loc) · 2.39 KB
/
save_conformer_from_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from tensorflow_asr.utils import setup_environment, setup_devices
setup_environment()
import tensorflow as tf
DEFAULT_YAML = os.path.join(os.path.abspath(os.path.dirname(__file__)), "config.yml")
tf.keras.backend.clear_session()
parser = argparse.ArgumentParser(prog="Conformer Testing")
parser.add_argument("--config", type=str, default=DEFAULT_YAML,
help="The file path of model configuration file")
parser.add_argument("--saved", type=str, default=None,
help="Path to saved model")
parser.add_argument("--device", type=int, default=0,
help="Device's id to run test on")
parser.add_argument("--cpu", default=False, action="store_true",
help="Whether to only use cpu")
parser.add_argument("output", type=str, default=None,
help="Output to save whole model")
args = parser.parse_args()
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": args.mxp})
setup_devices([args.device], cpu=args.cpu)
from tensorflow_asr.configs.user_config import UserConfig
from tensorflow_asr.featurizers.speech_featurizers import TFSpeechFeaturizer
from tensorflow_asr.featurizers.text_featurizers import CharFeaturizer
from tensorflow_asr.models.conformer import Conformer
config = UserConfig(DEFAULT_YAML, args.config, learning=True)
speech_featurizer = TFSpeechFeaturizer(config["speech_config"])
text_featurizer = CharFeaturizer(config["decoder_config"])
tf.random.set_seed(0)
assert args.saved
# build model
conformer = Conformer(
vocabulary_size=text_featurizer.num_classes,
**config["model_config"]
)
conformer._build(speech_featurizer.shape)
conformer.load_weights(args.saved, by_name=True)
conformer.summary(line_length=150)
conformer.save(args.output)
print(f"Saved whole model to {args.output}")