forked from TensorSpeech/TensorFlowASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_conformer.py
131 lines (107 loc) · 5.08 KB
/
train_conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import argparse
from tensorflow_asr.utils import setup_environment, setup_strategy
setup_environment()
import tensorflow as tf
DEFAULT_YAML = os.path.join(os.path.abspath(os.path.dirname(__file__)), "config.yml")
tf.keras.backend.clear_session()
parser = argparse.ArgumentParser(prog="Conformer Training")
parser.add_argument("--config", type=str, default=DEFAULT_YAML,
help="The file path of model configuration file")
parser.add_argument("--max_ckpts", type=int, default=10,
help="Max number of checkpoints to keep")
parser.add_argument("--tfrecords", default=False, action="store_true",
help="Whether to use tfrecords")
parser.add_argument("--tbs", type=int, default=None,
help="Train batch size per replica")
parser.add_argument("--ebs", type=int, default=None,
help="Evaluation batch size per replica")
parser.add_argument("--devices", type=int, nargs="*", default=[0],
help="Devices' ids to apply distributed training")
parser.add_argument("--mxp", default=False, action="store_true",
help="Enable mixed precision")
parser.add_argument("--cache", default=False, action="store_true",
help="Enable caching for dataset")
args = parser.parse_args()
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": args.mxp})
strategy = setup_strategy(args.devices)
from tensorflow_asr.configs.user_config import UserConfig
from tensorflow_asr.datasets.asr_dataset import ASRTFRecordDataset, ASRSliceDataset
from tensorflow_asr.featurizers.speech_featurizers import TFSpeechFeaturizer
from tensorflow_asr.featurizers.text_featurizers import CharFeaturizer
from tensorflow_asr.runners.transducer_runners import TransducerTrainer
from tensorflow_asr.models.conformer import Conformer
from tensorflow_asr.optimizers.schedules import TransformerSchedule
config = UserConfig(DEFAULT_YAML, args.config, learning=True)
speech_featurizer = TFSpeechFeaturizer(config["speech_config"])
text_featurizer = CharFeaturizer(config["decoder_config"])
if args.tfrecords:
train_dataset = ASRTFRecordDataset(
data_paths=config["learning_config"]["dataset_config"]["train_paths"],
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"],
speech_featurizer=speech_featurizer,
text_featurizer=text_featurizer,
augmentations=config["learning_config"]["augmentations"],
stage="train", cache=args.cache, shuffle=True
)
eval_dataset = ASRTFRecordDataset(
data_paths=config["learning_config"]["dataset_config"]["eval_paths"],
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"],
speech_featurizer=speech_featurizer,
text_featurizer=text_featurizer,
stage="eval", cache=args.cache, shuffle=True
)
else:
train_dataset = ASRSliceDataset(
data_paths=config["learning_config"]["dataset_config"]["train_paths"],
speech_featurizer=speech_featurizer,
text_featurizer=text_featurizer,
augmentations=config["learning_config"]["augmentations"],
stage="train", cache=args.cache, shuffle=True
)
eval_dataset = ASRSliceDataset(
data_paths=config["learning_config"]["dataset_config"]["eval_paths"],
speech_featurizer=speech_featurizer,
text_featurizer=text_featurizer,
stage="eval", cache=args.cache, shuffle=True
)
conformer_trainer = TransducerTrainer(
config=config["learning_config"]["running_config"],
text_featurizer=text_featurizer, strategy=strategy
)
with conformer_trainer.strategy.scope():
# build model
conformer = Conformer(
**config["model_config"],
vocabulary_size=text_featurizer.num_classes
)
conformer._build(speech_featurizer.shape)
conformer.summary(line_length=120)
optimizer_config = config["learning_config"]["optimizer_config"]
optimizer = tf.keras.optimizers.Adam(
TransformerSchedule(
d_model=config["model_config"]["dmodel"],
warmup_steps=optimizer_config["warmup_steps"],
max_lr=(0.05 / math.sqrt(config["model_config"]["dmodel"]))
),
beta_1=optimizer_config["beta1"],
beta_2=optimizer_config["beta2"],
epsilon=optimizer_config["epsilon"]
)
conformer_trainer.compile(model=conformer, optimizer=optimizer,
max_to_keep=args.max_ckpts)
conformer_trainer.fit(train_dataset, eval_dataset, train_bs=args.tbs, eval_bs=args.ebs)