-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
356 lines (313 loc) · 15.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# simplified app.py for streamlit cloud
import streamlit as st
import json
import re
import os
import sys
from loguru import logger
# Import your modules (make sure they are correctly installed in your environment)
from afusion.execution import run_alphafold
from afusion.sequence_input import (
collect_protein_sequence_data,
collect_rna_sequence_data,
collect_dna_sequence_data,
collect_ligand_sequence_data
)
from afusion.bonds import handle_bond
from afusion.utils import compress_output_folder
# Configure the logger
logger.add("afusion.log", rotation="1 MB", level="DEBUG")
def main():
# Set page configuration and theme
st.set_page_config(
page_title="AFusion: AlphaFold 3 GUI",
page_icon="🧬",
layout="wide",
initial_sidebar_state="expanded",
)
# Custom CSS styling
st.markdown("""
<style>
/* Remove padding */
.css-18e3th9 {
padding-top: 0rem;
padding-bottom: 0rem;
padding-left: 1rem;
padding-right: 1rem;
}
/* Header styling */
.css-1v3fvcr {
font-size: 2rem;
color: #2c3e50;
}
/* Sidebar styling */
.css-1d391kg {
background-color: #f2f4f5;
}
/* Button styling */
.stButton>button {
background-color: #2c3e50;
color: white;
border-radius: 5px;
}
/* Scrollbar styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-thumb {
background: #2c3e50;
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
# Title and subtitle
st.markdown("<h1 style='text-align: center;'>🔬 AFusion: AlphaFold 3 GUI</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center; font-size: 16px;'>A convenient GUI for running AlphaFold 3 predictions</p>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center; font-size: 14px;'>If this project helps you, please ⭐️ <a href='https://github.com/Hanziwww/AlphaFold3-GUI' target='_blank'>my project</a>!</p>", unsafe_allow_html=True)
#### Sidebar Navigation ####
with st.sidebar:
st.header("Navigation")
st.sidebar.markdown("---")
sections = {
"Job Settings": "job_settings",
"Sequences": "sequences",
"Bonded Atom Pairs": "bonded_atom_pairs",
"User Provided CCD": "user_ccd",
"Generated JSON": "json_content",
"Execution Settings": "execution_settings",
"Run AlphaFold 3": "run_alphafold",
}
for section_name, section_id in sections.items():
st.markdown(f"<a href='#{section_id}' style='text-decoration: none;'>{section_name}</a>", unsafe_allow_html=True)
st.markdown("---")
st.markdown("<small>Created by Hanzi 2024.</small>", unsafe_allow_html=True)
# Main Content
st.markdown('<div id="home"></div>', unsafe_allow_html=True)
st.markdown("### Welcome to AFusion!")
st.markdown("Use this GUI to generate input JSON files and run AlphaFold 3 predictions with ease. Please [install AlphaFold 3](https://github.com/google-deepmind/alphafold3/blob/main/docs/installation.md) before using.")
st.markdown('<div id="job_settings"></div>', unsafe_allow_html=True)
st.header("📝 Job Settings")
with st.expander("Configure Job Settings", expanded=True):
job_name = st.text_input("Job Name", value="My AlphaFold Job", help="Enter a descriptive name for your job.")
logger.info(f"Job name set to: {job_name}")
model_seeds = st.text_input("Model Seeds (comma-separated)", value="1,2,3", help="Provide integer seeds separated by commas.")
logger.debug(f"Model seeds input: {model_seeds}")
model_seeds_list = [int(seed.strip()) for seed in model_seeds.split(",") if seed.strip().isdigit()]
if not model_seeds_list:
st.error("Please provide at least one valid model seed.")
logger.error("No valid model seeds provided.")
st.stop()
logger.info(f"Model seeds list: {model_seeds_list}")
st.markdown('<div id="sequences"></div>', unsafe_allow_html=True)
st.header("📄 Sequences")
sequences = []
num_entities = st.number_input("Number of Entities", min_value=1, step=1, value=1, help="Select the number of entities you want to add.")
logger.info(f"Number of entities set to: {num_entities}")
for i in range(int(num_entities)):
st.markdown(f"### Entity {i+1}")
with st.expander(f"Entity {i+1} Details", expanded=True):
entity_type = st.selectbox(f"Select Entity Type", ["Protein 🧬", "RNA 🧫", "DNA 🧬", "Ligand 💊"], key=f"entity_type_{i}")
logger.info(f"Entity {i+1} type: {entity_type}")
copy_number = st.number_input(f"Copy Number", min_value=1, step=1, value=1, key=f"copy_number_{i}", help="Specify the number of copies of this sequence.")
logger.info(f"Entity {i+1} copy number: {copy_number}")
# Collect sequence data
if entity_type.startswith("Protein"):
sequence_data = collect_protein_sequence_data(i)
elif entity_type.startswith("RNA"):
sequence_data = collect_rna_sequence_data(i)
elif entity_type.startswith("DNA"):
sequence_data = collect_dna_sequence_data(i)
elif entity_type.startswith("Ligand"):
sequence_data = collect_ligand_sequence_data(i)
else:
st.error(f"Unknown entity type: {entity_type}")
logger.error(f"Unknown entity type: {entity_type}")
continue # Skip to next entity
# Handle IDs based on copy number
entity_ids = []
if copy_number >= 1:
# Allow user to input multiple IDs
entity_id = st.text_input(f"Entity ID(s) (comma-separated)", key=f"entity_id_{i}", help="Provide entity ID(s), separated by commas if multiple.")
if not entity_id.strip():
st.error("Entity ID is required.")
logger.error("Entity ID missing.")
continue
entity_ids = re.split(r"\s*,\s*", entity_id)
if len(entity_ids) != copy_number:
st.error(f"Please provide {copy_number} ID(s) separated by commas.")
logger.error(f"Number of IDs provided does not match copy number for Entity {i+1}.")
continue
logger.debug(f"Entity {i+1} IDs: {entity_ids}")
for copy_id in entity_ids:
# Clone the sequence data and set the ID
sequence_entry = sequence_data.copy()
sequence_entry['id'] = copy_id
# Wrap the entry appropriately
if entity_type.startswith("Protein"):
sequences.append({"protein": sequence_entry})
elif entity_type.startswith("RNA"):
sequences.append({"rna": sequence_entry})
elif entity_type.startswith("DNA"):
sequences.append({"dna": sequence_entry})
elif entity_type.startswith("Ligand"):
sequences.append({"ligand": sequence_entry})
else:
st.error("Copy number must be at least 1.")
logger.error("Invalid copy number.")
continue
st.markdown('<div id="bonded_atom_pairs"></div>', unsafe_allow_html=True)
st.header("🔗 Bonded Atom Pairs (Optional)")
bonded_atom_pairs = []
add_bonds = st.checkbox("Add Bonded Atom Pairs")
if add_bonds:
num_bonds = st.number_input("Number of Bonds", min_value=1, step=1, key="num_bonds")
for b in range(int(num_bonds)):
st.markdown(f"**Bond {b+1}**")
bond = handle_bond(b)
if bond:
bonded_atom_pairs.append(bond)
logger.debug(f"Added bond: {bond}")
st.markdown('<div id="user_ccd"></div>', unsafe_allow_html=True)
st.header("🧩 User Provided CCD (Optional)")
user_ccd = st.text_area("User CCD (mmCIF format)")
if user_ccd:
logger.debug("User provided CCD data.")
# Generate JSON Data
alphafold_input = {
"name": job_name,
"modelSeeds": model_seeds_list,
"sequences": sequences,
"dialect": "alphafold3",
"version": 1
}
if bonded_atom_pairs:
alphafold_input["bondedAtomPairs"] = bonded_atom_pairs
if user_ccd:
alphafold_input["userCCD"] = user_ccd
# Convert JSON to string
json_output = json.dumps(alphafold_input, indent=2)
logger.debug(f"Generated JSON:\n{json_output}")
st.markdown('<div id="json_content"></div>', unsafe_allow_html=True)
st.header("📄 Generated JSON Content")
st.code(json_output, language="json")
st.markdown('<div id="execution_settings"></div>', unsafe_allow_html=True)
st.header("⚙️ AlphaFold 3 Execution Settings")
with st.expander("Configure Execution Settings", expanded=True):
# Paths for execution
af_input_path = st.text_input("AF Input Path", value=os.path.expanduser("~/af_input"), help="Path to AlphaFold input directory.")
af_output_path = st.text_input("AF Output Path", value=os.path.expanduser("~/af_output"), help="Path to AlphaFold output directory.")
model_parameters_dir = st.text_input("Model Parameters Directory", value="/path/to/models", help="Path to model parameters directory.")
databases_dir = st.text_input("Databases Directory", value="/path/to/databases", help="Path to databases directory.")
logger.debug(f"Execution settings: af_input_path={af_input_path}, af_output_path={af_output_path}, model_parameters_dir={model_parameters_dir}, databases_dir={databases_dir}")
# Additional options
run_data_pipeline = st.checkbox("Run Data Pipeline (CPU only, time-consuming)", value=True)
run_inference = st.checkbox("Run Inference (requires GPU)", value=True)
logger.info(f"Run data pipeline: {run_data_pipeline}, Run inference: {run_inference}")
# Bucket Sizes Configuration
use_custom_buckets = st.checkbox("Specify Custom Compilation Buckets", value=False)
if use_custom_buckets:
buckets_input = st.text_input(
"Bucket Sizes (comma-separated)",
value="256,512,768,1024,1280,1536,2048,2560,3072,3584,4096,4608,5120",
help="Specify bucket sizes separated by commas. Example: 256,512,768,..."
)
# Parse buckets
bucket_sizes = [int(size.strip()) for size in buckets_input.split(",") if size.strip().isdigit()]
if not bucket_sizes:
st.error("Please provide at least one valid bucket size.")
logger.error("No valid bucket sizes provided.")
st.stop()
logger.debug(f"Custom bucket sizes: {bucket_sizes}")
else:
bucket_sizes = [] # Empty list indicates default buckets
st.markdown('<div id="run_alphafold"></div>', unsafe_allow_html=True)
st.header("🚀 Run AlphaFold 3")
# Save JSON to file
json_save_path = os.path.join(af_input_path, "fold_input.json")
try:
os.makedirs(af_input_path, exist_ok=True)
with open(json_save_path, "w") as json_file:
json.dump(alphafold_input, json_file, indent=2)
st.success(f"JSON file saved to {json_save_path}")
logger.info(f"JSON file saved to {json_save_path}")
except Exception as e:
st.error(f"Error saving JSON file: {e}")
logger.error(f"Error saving JSON file: {e}")
# Run AlphaFold 3
if st.button("Run AlphaFold 3 Now ▶️"):
# Build the Docker command
docker_command = (
f"docker run --rm "
f"--volume {af_input_path}:/root/af_input "
f"--volume {af_output_path}:/root/af_output "
f"--volume {model_parameters_dir}:/root/models "
f"--volume {databases_dir}:/root/public_databases "
f"--gpus all "
f"alphafold3 "
f"python run_alphafold.py "
f"--json_path=/root/af_input/fold_input.json "
f"--model_dir=/root/models "
f"--output_dir=/root/af_output "
f"{'--run_data_pipeline' if run_data_pipeline else ''} "
f"{'--run_inference' if run_inference else ''} "
f"{'--buckets ' + ','.join(map(str, bucket_sizes)) if bucket_sizes else ''}"
)
st.markdown("#### Docker Command:")
st.code(docker_command, language="bash")
logger.debug(f"Docker command: {docker_command}")
# Run the command and display output in a box
with st.spinner('AlphaFold 3 is running...'):
output_placeholder = st.empty()
output = run_alphafold(docker_command, placeholder=output_placeholder)
# Display the output in an expander box
st.markdown("#### Command Output:")
with st.expander("Show Command Output 📄", expanded=False):
st.text_area("Command Output", value=output, height=400)
logger.info("AlphaFold 3 execution completed.")
# Check if the output directory exists
job_output_folder_name = job_name.lower().replace(' ', '_')
output_folder_path = os.path.join(af_output_path, job_output_folder_name)
if os.path.exists(output_folder_path):
st.success("AlphaFold 3 execution completed successfully.")
st.info(f"Results are saved in: {output_folder_path}")
logger.info(f"Results saved in: {output_folder_path}")
# Provide download option
st.markdown("### Download Results 📥")
zip_data = compress_output_folder(output_folder_path, job_output_folder_name)
st.download_button(
label="Download ZIP",
data=zip_data,
file_name=f"{job_output_folder_name}.zip",
mime="application/zip"
)
logger.info("User downloaded the results ZIP file.")
# Provide instructions to run the Visualization App
st.markdown("### Visualize Your Results")
st.write("To visualize your results, run the following command:")
st.code(f"afusion visualization --output_folder_path '{output_folder_path}'", language="bash")
st.write("Or launch the Visualization App and enter the output folder path.")
logger.info("Provided instructions to the user to run the Visualization App.")
else:
st.error("AlphaFold 3 execution did not complete successfully. Please check the logs.")
logger.error("AlphaFold 3 execution did not complete successfully.")
else:
st.info("Click the 'Run AlphaFold 3 Now ▶️' button to execute the command.")
st.markdown("---")
# Provide access to the log file
st.markdown("### Download Log File 📥")
with open('afusion.log', 'r') as log_file:
log_content = log_file.read()
st.download_button(
label="Download Log File",
data=log_content,
file_name='afusion.log',
mime='text/plain'
)
# Display log content in the app
with st.expander("Show Log Content 📄", expanded=False):
st.text_area("Log Content", value=log_content, height=200)
st.markdown("---")
# Add footer
st.markdown("<p style='text-align: center; font-size: 12px; color: #95a5a6;'>© 2024 Hanzi. All rights reserved.</p>", unsafe_allow_html=True)
if __name__ == "__main__":
main()