-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
161 lines (124 loc) · 6.22 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import tarfile
import torch
import torchaudio
import numpy as np
from utils import AudioAugs
import random
from torch.utils.data import DataLoader, TensorDataset, Dataset
# Audio processing parameters
sample_rate = 22050
duration = 3
samples_per_track = sample_rate * duration
n_mels = 128
n_fft = 2048
hop_length = 512
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import random
class CustomAudioDataset(Dataset):
def __init__(self, features, labels=None, transform=None):
self.features = features
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
feature = self.features[idx]
if self.transform:
feature = self.transform(feature)
if self.labels is not None:
label = self.labels[idx]
return feature, label
return feature
def extract_tar_files(tar_path, extract_to):
with tarfile.open(tar_path, 'r') as file:
file.extractall(extract_to)
print(f"Extracted contents to {extract_to}")
def load_and_convert_to_melspectrogram(file_path):
waveform, sr = torchaudio.load(file_path)
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)(waveform)
waveform = torchaudio.transforms.Vol(waveform.size(0))(waveform)
waveform = waveform[:, :samples_per_track] if waveform.size(1) > samples_per_track else torch.nn.functional.pad(waveform, (0, samples_per_track - waveform.size(1)))
mel_spectrogram = torchaudio.transforms.MelSpectrogram(sample_rate=sample_rate, n_fft=n_fft, win_length=n_fft, hop_length=hop_length, n_mels=n_mels)(waveform)
S_DB = torchaudio.transforms.AmplitudeToDB()(mel_spectrogram)
return S_DB.squeeze(0).numpy()
def process_audio_files(audio_path, label_file_path, output_path):
features = []
# Load labels
with open(label_file_path, 'r') as f:
labels = [int(line.strip()) for line in f.readlines()]
# List all mp3 files, sort them to ensure order, and process
filenames = [f for f in os.listdir(audio_path) if f.endswith(".mp3") and not f.startswith("._")]
filenames.sort(key=lambda x: int(x.split('.')[0])) # Sorting by numerical order assuming filename like '0.mp3', '1.mp3', etc.
for filename in filenames:
file_path = os.path.join(audio_path, filename)
index = int(filename.split('.')[0]) # Get index from filename '0.mp3' -> 0
if index < len(labels): # Ensure we do not go out of bounds
features.append(load_and_convert_to_melspectrogram(file_path))
else:
print(f"Skipping {filename} as it exceeds label file count.")
# Ensure data and labels have the same length
min_length = min(len(features), len(labels))
features = features[:min_length]
labels = labels[:min_length]
np.savez(output_path, data=np.array(features), labels=np.array(labels))
def create_data_loader(data_path, batch_size=64):
with np.load(data_path) as loaded_data:
data = loaded_data['data']
labels = loaded_data['labels']
data_tensor = torch.tensor(data, dtype=torch.float32).unsqueeze(1) # Adding a channel dimension
labels_tensor = torch.tensor(labels, dtype=torch.long)
dataset = TensorDataset(data_tensor, labels_tensor)
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
def initialize_data_loader(dataset_dir, tar_paths, batch_size=64, split_ratio=0.8, augmentations=None):
train_loader = None
val_loader = None
test_loader = None
# Process training and validation data
for tar_path, subdir in tar_paths:
extract_tar_files(tar_path, dataset_dir)
data_path = os.path.join(dataset_dir, subdir + '_features.npz')
if not os.path.exists(data_path):
audio_path = os.path.join(dataset_dir, subdir)
label_file = os.path.join(dataset_dir, 'train_label.txt') # General label file path
process_audio_files(audio_path, label_file, data_path)
if os.path.exists(data_path):
with np.load(data_path) as data:
features = data['data']
labels = data['labels']
# Split the dataset
split_index = int(len(features) * split_ratio)
train_features = features[:split_index]
train_labels = labels[:split_index]
val_features = features[split_index:]
val_labels = labels[split_index:]
# Convert to PyTorch tensors
train_features_tensor = torch.tensor(train_features, dtype=torch.float32).unsqueeze(1)
train_labels_tensor = torch.tensor(train_labels, dtype=torch.long)
val_features_tensor = torch.tensor(val_features, dtype=torch.float32).unsqueeze(1)
val_labels_tensor = torch.tensor(val_labels, dtype=torch.long)
# Creating TensorDatasets
train_dataset = CustomAudioDataset(train_features_tensor, train_labels_tensor, transform=augmentations)
val_dataset = TensorDataset(val_features_tensor, val_labels_tensor)
# Creating DataLoaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Process test data
test_tar_path = '/scratch/hy2611/ML_Competition/dataset/test_mp3s.tar'
test_subdir = 'test_mp3s'
extract_tar_files(test_tar_path, dataset_dir)
test_audio_path = os.path.join(dataset_dir, test_subdir)
test_data_path = os.path.join(dataset_dir, test_subdir + '_features.npz')
if not os.path.exists(test_data_path):
process_audio_files(test_audio_path, None, test_data_path) # No labels for test data
if os.path.exists(test_data_path):
with np.load(test_data_path) as data:
test_features = data['data']
# Convert to PyTorch tensors
test_features_tensor = torch.tensor(test_features, dtype=torch.float32).unsqueeze(1)
# Creating TensorDataset and DataLoader for test data
test_dataset = TensorDataset(test_features_tensor)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return train_loader, val_loader, test_loader