-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
206 lines (155 loc) · 7.1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
from pathlib import Path
import shutil
import torch
from torch.backends import cuda, cudnn
from callbacks.custom import get_ckpt_callback, get_viz_callback
cuda.matmul.allow_tf32 = True
cudnn.allow_tf32 = True
torch.multiprocessing.set_sharing_strategy('file_system')
from loggers.utils import get_wandb_logger, get_ckpt_path
import hydra
from omegaconf import DictConfig, OmegaConf
import pytorch_lightning as pl
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import ModelSummary
from config.modifier import dynamically_modify_train_config
from modules.utils.fetch import fetch_data_module, fetch_model_module
import h5py
import hdf5plugin
import ipdb
import numpy as np
import cv2
from tqdm import tqdm
def sort_key(filename):
return int(filename.split('.')[0])
@hydra.main(config_path='config', config_name='val', version_base='1.2')
def main(config: DictConfig):
dynamically_modify_train_config(config)
# Just to check whether config can be resolved
OmegaConf.to_container(config, resolve=True, throw_on_missing=True)
print('------ Configuration ------')
print(OmegaConf.to_yaml(config))
print('---------------------------')
gpus = config.hardware.gpus
assert isinstance(gpus, int), 'no more than 1 GPU supported'
gpus = 'cuda:0'
ckpt_path = Path(config.checkpoint)
module = fetch_model_module(config=config)
module = module.load_from_checkpoint(str(ckpt_path), **{'full_config': config})
module.set_model_to_gpus(gpus)
module = module.eval()
mode = 'pre' #['gt', 'pre']
h5_file = '/data/zht/DSEC/DSEC_process/val/zurich_city_15_a'
ev_file = h5_file + '/event_representations_v2/stacked_histogram_dt=50_nbins=10/event_representations.h5'
labels_gt = h5_file + '/labels_v2/labels.npz'
labels = np.load(labels_gt)['labels']
frame_to_labels = np.load(labels_gt)['objframe_idx_2_label_idx']
frame_to_ev = np.load(h5_file + '/event_representations_v2/stacked_histogram_dt=50_nbins=10/objframe_idx_2_repr_idx.npy')
if mode == 'pre':
images_out_put_dir = 'predictions/images'
video_out_put_dir = 'predictions/video'
elif mode == 'gt':
images_out_put_dir = 'pre_gt/images'
video_out_put_dir = 'pre_gt/video'
if not os.path.exists(images_out_put_dir):
os.makedirs(images_out_put_dir)
else:
shutil.rmtree(images_out_put_dir)
os.makedirs(images_out_put_dir)
if not os.path.exists(video_out_put_dir):
os.makedirs(video_out_put_dir)
else:
shutil.rmtree(video_out_put_dir)
os.makedirs(video_out_put_dir)
ev_file = h5py.File(ev_file)
event_frames = ev_file['data']
bbox_color = (0, 255, 0)
# bbox_color = (255, 255, 255)
unknown_color = (0, 255, 255)
pre_state = None
for frame_index in tqdm(range(event_frames.shape[0])):
# single_frame_shown = (event_frames[frame_index].sum(axis=0) * 60).astype(np.uint8)
# single_frame_shown = cv2.cvtColor(single_frame_shown, cv2.COLOR_GRAY2BGR)
ev_pr = event_frames[frame_index]
num_bins = int(ev_pr.shape[0] / 2)
height = int(ev_pr.shape[1])
width = int(ev_pr.shape[2])
ev_pr = np.transpose(ev_pr, (1, 2, 0))
frame = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(num_bins):
pos_image = (ev_pr[:, :, i + num_bins]).astype(np.uint8)
neg_image = (ev_pr[:, :, i]).astype(np.uint8)
pos_image = cv2.equalizeHist(pos_image)
neg_image = cv2.equalizeHist(neg_image)
image = np.concatenate((neg_image[..., None], np.zeros((height, width, 1), dtype=np.uint8), pos_image[..., None]), axis=-1)
frame = np.add(frame, image)
single_frame_shown = frame * 255.0
event_frame = torch.tensor(event_frames[frame_index]).unsqueeze(0)
event_frame = event_frame.to(gpus)
width = event_frame.shape[3]
height = event_frame.shape[2]
if mode == 'gt':
if frame_index in frame_to_ev:
rgb_frame_index = int(np.where(frame_to_ev == frame_index)[0])
# print('rgb_frame_index{}, len(frame_to_ev){}'.format(rgb_frame_index, len(frame_to_ev)))
if rgb_frame_index+1 < len(frame_to_ev):
results = labels[frame_to_labels[rgb_frame_index]:frame_to_labels[rgb_frame_index+1]]
else:
results = labels[frame_to_labels[rgb_frame_index]:]
else:
results = []
elif mode == 'pre':
with torch.inference_mode():
results, pre_state = module.forward(event_frame, pre_state)
if results is None:
results = []
if len(results) > 0:
for each_bbox in results:
if mode == 'gt':
x1, y1 = list(each_bbox)[1:3]
w, h = list(each_bbox)[3:5]
x2, y2 = x1+w, y1+h
confidence = round(float(list(each_bbox)[6]), 2)
label_id = int(list(each_bbox)[5])
if label_id == 0 or label_id == 2:
color = bbox_color
else:
color = unknown_color
elif mode == 'pre':
x1, y1, x2, y2 = list(each_bbox)[0:4]
confidence = round(float(list(each_bbox)[4]), 2)
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
abs_ =int(abs(y1-y2) * abs(x1-x2))
if abs(y1-y2) * abs(x1-x2) < 200:
continue
thickness = 2
if mode == 'pre':
cv2.rectangle(single_frame_shown, (x1, y1), (x2, y2), bbox_color, thickness)
# cv2.putText(single_frame_shown, str(confidence), (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, bbox_color, thickness)
elif mode == 'gt':
cv2.rectangle(single_frame_shown, (x1, y1), (x2, y2), color, thickness)
# cv2.putText(single_frame_shown, str(confidence), (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness)
output_file_path = images_out_put_dir + '/{}.png'.format(frame_index)
cv2.imwrite(output_file_path, single_frame_shown)
images = [img for img in os.listdir(images_out_put_dir) if img.endswith(".png")]
images.sort(key=sort_key)
video_name = video_out_put_dir + '/output_video.avi'
fps = 60
frame_size = (width, height)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
video_writer = cv2.VideoWriter(video_name, fourcc, fps, frame_size)
for image in images:
image_path = os.path.join(images_out_put_dir, image)
frame = cv2.imread(image_path)
video_writer.write(frame)
video_writer.release()
print('Save the video in {}'.format(video_name))
if __name__ == '__main__':
main()