forked from NilsB98/Diffusion-Based-AD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_reconstruction.py
128 lines (105 loc) · 5.59 KB
/
pipeline_reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import numpy as np
from diffusers import DDPMScheduler, DDIMScheduler
from diffusers.utils import randn_tensor
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class ReconstructionPipeline(DiffusionPipeline):
r"""
Pipeline for image generation.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler: Union[DDPMScheduler, DDIMScheduler]):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
original_images:torch.Tensor,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
start_at_timestep: int = 200,
num_inference_steps: int = 200,
output_type: Optional[str] = "pil",
return_dict: bool = True
) -> Union[ImagePipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
original_images:
Images to add noise to and then reconstruct.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
start_at_timestep (`int`, *optional*, defaults to 200):
Determine to which degree/timestep the image should be noised and then denoised.,
num_inference_steps (`int`, *optional*, defaults to 800):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. start_at_timestep + num_inferenc_steps must be smaller than num_trainsteps
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Example:
```py
>>> from diffusers import DDPMPipeline
>>> # load model and scheduler
>>> pipe = ReconstructionPipeline.from_pretrained("google/ddpm-cat-256")
>>> # run pipeline in inference (sample random noise and denoise)
>>> image = pipe().images[0]
>>> # save image
>>> image.save("ddpm_generated_image.png")
```
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# Sample gaussian noise to begin loop
image_shape = original_images.shape
if self.device.type == "mps":
# randn does not work reproducibly on mps
image = randn_tensor(image_shape, generator=generator)
image = image.to(self.device)
raise Exception("not correctly implemented for mps yet")
else:
noise = randn_tensor(image_shape, generator=generator, device=self.device)
starting_step = torch.ones((image_shape[0],), dtype=torch.int64, device=self.device) * start_at_timestep
image = self.scheduler.add_noise(original_images.to(self.device), noise, starting_step)
# set step values
# step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, start_at_timestep)).round()[::-1].copy().astype(np.int64)
self.scheduler.set_timesteps(timesteps=timesteps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. compute previous image: x_t -> x_t-1
image = self.scheduler.step(model_output, t, image, original_images, generator=generator).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)