-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_synthesizing.py
377 lines (322 loc) · 12.5 KB
/
data_synthesizing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""
合成数据集构建
"""
from pathlib import Path
import argparse
from typing import List, Union, Tuple
from abc import ABC, abstractmethod
import shutil
import os
import networkx as nx
import numpy as np
from torch_geometric.transforms import BaseTransform
from torch_geometric.data import Data, Dataset
from tqdm.auto import tqdm
import torch
from utils.common import (
colored_print,
download_file_from_ftp,
upload_file_to_ftp,
zip_directory,
unzip_file,
)
from utils.toolbox import (
ProblemType,
FeatureBuilder,
GraphTool,
RankingProcessor,
DATA_PATH,
SYNTHETIC_DATA_PATH,
DEFAULT_NODE_NUM_RANGES,
)
from algorithm_collection import PageRankAlgorithm
class GraphModel(ABC):
TYPE = None
@abstractmethod
def __init__(self, nodeNum: int, averageDegree: int):
pass
@abstractmethod
def build(self, *args) -> nx.Graph:
pass
class GraphER(GraphModel):
"""Erdős-Rényi(ER)模型"""
TYPE = "erdos_renyi"
def __init__(self, nodeNum: int, averageDegree: int):
"""<k> = p * (N - 1)"""
self.n = nodeNum
self.p = averageDegree / (nodeNum - 1)
def build(self):
return nx.erdos_renyi_graph(n=self.n, p=self.p)
class GraphSW(GraphModel):
"""Small-world(SW)模型"""
TYPE = "small_world"
def __init__(self, nodeNum: int, averageDegree: int):
"""<k> = k"""
if averageDegree % 2 == 1:
raise ValueError("K值必须为偶数")
self.n = nodeNum
self.k = averageDegree
self.p = 0.1 # NOTE: 参考Finder的参数设计
def build(self):
return nx.connected_watts_strogatz_graph(n=self.n, k=self.k, p=self.p)
class GraphBA(GraphModel):
"""Barabási-Albert(BA)模型"""
TYPE = "barabasi_albert"
def __init__(self, nodeNum: int, averageDegree: int):
"""<k> = 2 * m"""
self.n = nodeNum
self.m = int(averageDegree / 2)
def build(self):
return nx.barabasi_albert_graph(n=self.n, m=self.m)
class Factory:
def __init__(
self,
path: Path,
graphModelClasses: List[GraphModel],
nodeNumRanges: List[Tuple[int, int]],
instanceNum: int,
):
"""根据参数分段生成足够的无节点属性无权无向图"""
self.path = path
self.path.mkdir(exist_ok=True, parents=True)
self.graphModelClasses = graphModelClasses
self.nodeNumRanges = nodeNumRanges
self.instanceNum = instanceNum
def produce(self):
for graphModelClass in self.graphModelClasses:
graph_model_path: Path = self.path / graphModelClass.TYPE
if not graph_model_path.exists():
graph_model_path.mkdir()
for nodeNumRange in self.nodeNumRanges:
instances_path = (
graph_model_path / f"n{nodeNumRange[0]}-{nodeNumRange[1]}"
)
instances_path.mkdir(exist_ok=True)
for ind in range(self.instanceNum):
nodeNum = np.random.randint(nodeNumRange[0], nodeNumRange[1])
instance_path = instances_path / f"g_{ind}.csv"
if instance_path.exists():
continue
graph = graphModelClass(
nodeNum=nodeNum,
averageDegree=GraphTool.get_random_averageDegree(nodeNum),
).build()
nx.write_edgelist(
graph, instance_path, delimiter=",", data=["weight"]
)
# nx.write_weighted_edgelist(graph, instance_path, delimiter=",")
class SyntheticDataset(Dataset):
def __init__(
self,
root: Path = SYNTHETIC_DATA_PATH,
datasetName: str = None,
problemType: ProblemType = ProblemType.CN,
graphModelClasses: List[GraphModel] = [
GraphER,
GraphSW,
GraphBA,
],
nodeNumRanges: List[Tuple[int, int]] = DEFAULT_NODE_NUM_RANGES,
instanceNum: int = 10, # NOTE: 优先级低于datasetName
transform: BaseTransform = None,
):
self.root = root
self.problemType = problemType
self.graphModelClasses = graphModelClasses
self.nodeNumRanges = nodeNumRanges
self.transform = transform
self.rebuild = True if datasetName is None else False
self.instanceNum = (
instanceNum
if self.rebuild
else int(
datasetName.split("-N")[1]
) # NOTE: 这里最好加上一道datasetName检查
)
self.graph_num = (
len(self.graphModelClasses) * len(self.nodeNumRanges) * self.instanceNum
)
if self.rebuild:
self.upload = (
False
if len(list(self.raw_root.glob("**/*.csv"))) > self.graph_num
else True
)
if not self.isRawReady:
colored_print("生成原始图数据...")
Factory(
path=self.raw_root,
graphModelClasses=self.graphModelClasses,
instanceNum=self.instanceNum,
nodeNumRanges=self.nodeNumRanges,
).produce()
colored_print("原始图数据生成完毕")
if not self.isProcessedReady:
colored_print("数据集生成中...")
self.process()
colored_print("数据集生成完毕")
if self.upload:
colored_print("数据集上传中...")
zip_filename = f"SyntheticDataset-N{self.instanceNum}.zip"
zip_directory(str(SYNTHETIC_DATA_PATH), str(DATA_PATH / zip_filename))
upload_file_to_ftp(str(DATA_PATH), zip_filename)
os.remove(DATA_PATH / zip_filename)
colored_print("数据集上传完毕")
else:
print("由于存在不属于该数据集的图数据,因而自动制止了上传行为...")
else:
if self.root.exists():
colored_print("清理过时数据集...")
shutil.rmtree(self.root)
colored_print("清理完成")
colored_print("数据集下载中...")
download_file_from_ftp(
local_directory=str(self.root.parent),
filename=datasetName + ".zip",
)
colored_print("数据集下载完成")
colored_print("数据集解压中...")
unzip_file(self.root, str(self.root.parent) + "/" + datasetName + ".zip")
colored_print("数据集解压完成")
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.__len__()})"
@property
def raw_root(self):
return self.root / "raw"
@property
def processed_root(self):
return self.root / "processed"
@property
def isRawReady(self):
if not self.raw_root.exists():
print("raw_root路径不存在")
return False
if not self.raw_root.is_dir():
print("raw_root路径为文件")
raise ValueError("raw_root路径为文件")
if len(self.raw_paths) != self.graph_num:
print("raw_root路径下图数据量不满足参数要求")
return False
return True
@property
def isProcessedReady(self):
if not self.processed_root.exists():
print("processed_root路径不存在")
return False
if not self.processed_root.is_dir():
print("processed_root路径为文件")
raise ValueError("processed_root路径为文件")
if len(self.processed_paths) != self.graph_num:
print("processed_root路径下图数据量不满足参数要求")
return False
return True
@property
def raw_paths(self):
raw_paths = sorted(list(self.raw_root.glob("**/*.csv")))
if len(raw_paths) > self.graph_num:
raw_paths = raw_paths[: self.graph_num]
return raw_paths
@property
def processed_paths(self):
processed_paths = sorted(list(self.processed_root.glob("**/*.pt")))
if len(processed_paths) > self.graph_num:
processed_paths = processed_paths[: self.graph_num]
return processed_paths
def process(self):
for raw_path in tqdm(self.raw_paths, desc="生成"):
# 获取对应的processed_path
graph_filename = raw_path.stem + ".pt"
graph_type = raw_path.parent.parent.name
graph_param = raw_path.parent.name
processed_path = (
self.processed_root / graph_type / graph_param / graph_filename
)
# 忽略processed_path已存在的情况
if processed_path.exists():
continue
# 计算data
data = self.process_graph(raw_path)
# 保存data
if not processed_path.parent.exists():
processed_path.parent.mkdir(exist_ok=True, parents=True)
torch.save(data, processed_path)
def process_graph(self, raw_path: Path):
graph = self.getG(raw_path)
X = self.getX(graph)
Y = self.getY(graph)
E = self.getE(graph)
return Data(x=X, edge_index=E, y=Y)
def __len__(self):
assert len(self.processed_paths) == len(self.raw_paths), "原始数据处理不完全"
return len(self.raw_paths)
def __getitem__(self, slice_obj: Union[slice, int]):
def get_data(path: Path):
data = torch.load(path)
if self.transform:
data = self.transform(data)
data.y = data.y[:, list(ProblemType).index(self.problemType)]
return data
if isinstance(slice_obj, slice):
start = slice_obj.start if slice_obj.start else 0
stop = slice_obj.stop if slice_obj.stop else self.__len__()
step = slice_obj.step if slice_obj.step else 1 if start <= stop else -1
return [
get_data(self.processed_paths[ind]) for ind in range(start, stop, step)
]
elif isinstance(slice_obj, int):
self.processed_path = self.processed_paths[slice_obj]
data = get_data(self.processed_path)
return data
else:
raise TypeError("Invalid argument type")
def len(self) -> int:
r"""Returns the number of graphs stored in the dataset."""
return self.__len__()
def get(self, idx: int) -> Data:
r"""Gets the data object at index :obj:`idx`."""
return self.__getitem__(idx)
@property
def num_node_features(self):
return self.__getitem__(0).x.shape[1]
@property
def num_edge_features(self):
return 0
def getG(self, path: Path) -> nx.Graph:
return nx.read_edgelist(path, delimiter=",", nodetype=int)
def getX(self, graph: nx.Graph) -> torch.Tensor:
return FeatureBuilder.getFeatureArray(graph)
def getY(self, graph) -> torch.Tensor:
algorithm = PageRankAlgorithm()
ranks = [
RankingProcessor.get_rank_from_order(
torch.tensor(algorithm.get_order_by_problemType(graph, problemType))
)
for problemType in list(ProblemType)
]
return torch.vstack(ranks).t().contiguous()
def getE(self, graph) -> torch.Tensor:
return GraphTool.get_edgeIndex_from_graph(graph)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Data Processing")
parser.add_argument(
"--instance_num", required=False, type=int, default=1, help="设置instanceNum"
)
args = parser.parse_args()
dataset = SyntheticDataset(instanceNum=args.instance_num)
print(dataset)
colored_print("验证数据集合理性....")
for ind in tqdm(range(len(dataset)), desc="验证"):
assert not torch.isnan(dataset[ind].x).any(), "x不应该出现nan"
assert not torch.isnan(dataset[ind].y).any(), "y不应该出现nan"
assert dataset[ind].x.shape[0] == len(
torch.unique(dataset[ind].edge_index)
), "节点数应该跟特征数相等"
assert (
dataset[ind].x.shape[0]
== dataset[ind].y.shape[0]
== len(dataset.getG(dataset.raw_paths[ind]).nodes)
), "Data的x,y的m应当相等且等于节点数"
assert (
len(dataset[:2]) == 2 and len(dataset[0:1]) == 1 and len(dataset[2:1]) == 1
), "dataset分片存在问题"
colored_print("验证流程结束")