-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_script.py
334 lines (314 loc) · 8.85 KB
/
training_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
from pathlib import Path
from typing import Dict
from torch import optim
import yaml
from data_processing import DatasetLoader
from data_loading import create_dataloaders
from model_handler import save_model_info
from model_builder import NiceModel
from training_engine import PreTrainer, Trainer
from utils.experiment import set_seeds, create_writer, generate_model_filename
from utils.common import (
colored_print,
timeit,
set_proxy,
get_stringified_params,
get_required_params,
)
from utils.toolbox import RankLossFunction, ProblemType, FeatureBuilder
def show_args(args):
for key, value in vars(args).items():
colored_print(f"{key}={value}", end=" ")
print()
def get_cleaned_params(args, exclude_params: list[str]) -> Dict:
cleaned_params = {}
for key, value in vars(args).items():
if key in exclude_params or value is None:
continue
cleaned_params[key] = value
return cleaned_params
def get_pretrain_environment_params(args) -> Dict:
exclude_params = [
"config",
"rounds",
"greedy_rate",
"discount_rate",
"learning_rate",
"environment",
"verbose",
]
cleaned_params = get_cleaned_params(args, exclude_params=exclude_params)
return cleaned_params
@timeit
def main(args):
show_args(args)
# 设置随机种子
if args.seed:
print(f"设置随机种子为: {args.seed}")
set_seeds(args.seed)
shuffles = [False, False, False]
else:
shuffles = [True, False, False]
# 设置保存路径与代理
if args.environment == "local":
baseDir = Path(".")
print("[INFO] 启用proxy...")
set_proxy()
elif args.environment == "colab":
baseDir = Path("./drive/MyDrive/KeyNodeFinder")
elif args.environment == "matpool":
baseDir = Path(".")
else:
raise ValueError(f"environment不支持{args.environment}选项...")
# 设置问题类型
try:
problems = [problemType.name for problemType in list(ProblemType)]
problemType = list(ProblemType)[problems.index(args.problem)]
except:
raise ValueError("不存在的问题类型")
# 获取合成数据集
dataset = DatasetLoader.load_synthetic_dataset(
f"SyntheticDataset-N{args.instances}", problemType=problemType
)
print(
f"节点特征数: {dataset.num_node_features}, 边特征数: {dataset.num_edge_features}"
)
"""预训练过程"""
# 加载数据集
(
pretrain_train_dataloader,
pretrain_val_dataloader,
pretrain_test_dataloader,
) = create_dataloaders(
dataset,
(0.6, 0.3, 0.1),
max_length=args.pre_max_length,
shuffles=shuffles,
seed=args.seed,
)
# 设置TB writer
pretrainWriter = create_writer(
experiment_name="pretrain-"
+ get_stringified_params(get_pretrain_environment_params(args)),
targetDir=baseDir / "logs",
)
# 初始化模型
modelParamNameList = get_required_params(NiceModel)
modelParamDict = {"input_features": FeatureBuilder.FEATURE_NUM}
for paramName in modelParamNameList:
if not modelParamDict.get(paramName):
modelParamDict[paramName] = getattr(args, paramName)
model = NiceModel(**modelParamDict)
# 设置代价函数与优化器
pretrainlossFn = RankLossFunction(verbose=False)
pretrainOptimizer = optim.Adam(
model.parameters(),
lr=args.pre_learning_rate,
weight_decay=args.pre_weight_decay,
)
# 预训练模型
_ = PreTrainer.train(
model=model,
train_dataloader=pretrain_train_dataloader,
val_dataloader=pretrain_val_dataloader,
lossFn=pretrainlossFn,
optimizer=pretrainOptimizer,
epochNum=args.pre_epochs,
writer=pretrainWriter,
verbose=args.verbose,
)
# 预训练评估
pretrain_evaluate_result = PreTrainer.evaluate(model, pretrain_test_dataloader)
print(f"预训练模型评价: {pretrain_evaluate_result}")
"""训练过程"""
# 加载数据集
(
train_train_dataloader,
train_val_dataloader,
train_test_dataloader,
) = create_dataloaders(
dataset,
(0.6, 0.3, 0.1),
batch_size=1,
shuffles=shuffles,
seed=args.seed,
)
# 训练模型
trainer = Trainer(
model=model,
dataloaders=(
train_train_dataloader,
train_val_dataloader,
train_test_dataloader,
),
roundNum=args.rounds,
greedyRate=args.greedy_rate,
discountRate=args.discount_rate,
learningRate=args.learning_rate,
weightDecay=args.weight_decay,
problemType=problemType,
verbose=args.verbose,
)
trainer.train()
"""模型保存"""
save_model_info(
model=model,
hyperparameters=vars(args),
evaluateResult=pretrain_evaluate_result,
targetDir=baseDir / "models",
modelFilename=generate_model_filename(model, label=problemType.name, length=8),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train")
# 参数传递方式【是否通过config.yaml】
parser.add_argument(
"--config",
action="store_true",
required=False,
default=False,
help="是否通过config.yaml传递参数",
)
# 建模相关参数
parser.add_argument(
"--problem",
required=False,
default="CN",
choices=["CN", "ND"],
help="设置problemType",
)
# 模型相关参数
parser.add_argument(
"--output_features",
required=False,
type=int,
default=10,
help="设置output_features",
)
parser.add_argument(
"--embedding_units",
nargs="+",
type=int,
default=(2, 10),
help="设置embedding_units【Tuple: 第一个元素是nums,第二个元素是out_channels】",
)
parser.add_argument(
"--ranking_units",
required=False,
type=int,
default=5,
help="设置ranking_units",
)
parser.add_argument(
"--valuing_units",
nargs="+",
type=int,
default=[10, 5],
help="设置valuing_units",
)
# 数据相关参数
parser.add_argument(
"--instances",
required=False,
type=int,
default=1,
help="设置instance_num",
)
# 训练相关参数
parser.add_argument(
"--pre_max_length",
required=False,
type=int,
default=100,
help="设置pretrain_max_length",
)
parser.add_argument(
"--pre_epochs",
required=False,
type=int,
default=1,
help="设置pretrain_epoch_num",
)
parser.add_argument(
"--pre_learning_rate",
required=False,
type=float,
default=0.001,
help="设置pretrain_learning_rate",
)
parser.add_argument(
"--pre_weight_decay",
required=False,
type=float,
default=0.001,
help="设置pretrain_weight_decay",
)
parser.add_argument(
"--rounds",
required=False,
type=int,
default=1,
help="设置train_round_num",
)
parser.add_argument(
"--greedy_rate",
required=False,
type=float,
default=0.05,
help="设置train_greedy_rate",
)
parser.add_argument(
"--discount_rate",
required=False,
type=float,
default=0.99,
help="设置train_discount_rate",
)
parser.add_argument(
"--learning_rate",
required=False,
type=float,
default=0.001,
help="设置train_learning_rate",
)
parser.add_argument(
"--weight_decay",
required=False,
type=float,
default=0.001,
help="设置train_weight_decay",
)
# 实验相关参数
parser.add_argument(
"--environment",
choices=["local", "colab", "matpool"],
required=False,
default="local",
help="选择环境(支持local和colab)",
)
parser.add_argument(
"--seed",
required=False,
type=int,
help="设置随机种子",
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="是否显示全部信息",
)
args = parser.parse_args()
# 加载config.yaml中的参数
if args.config:
with open(Path(__file__).parent / "config.yaml", "r") as f:
config = yaml.safe_load(f)
# 更新命令行参数
for key, value in config.items():
# 若value为default则不复盖默认值
if value == "DEFAULT":
continue
setattr(args, key, value)
main(args)