-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsfla.py
363 lines (305 loc) · 14 KB
/
sfla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# coding=utf-8
from math import sqrt, ceil
from random import randint, choice, random
from copy import deepcopy
# Read data from a file and return a 2D table
def read_2D_table(file_path):
with open(file_path, "r") as file:
lines = file.read().split("\n")
return [line.split() for line in lines if line.strip()]
# Process data from the table and extract relevant information
def extract_data(table2D):
num_jobs = int(table2D[0][0])
num_machines = int(table2D[0][1])
avg_ops_per_machine = float(table2D[0][2])
ops_per_job = [int(table2D[line][0]) for line in range(1, num_jobs + 1)]
job_machine_times = []
for line in range(1, num_jobs + 1):
machine_times = []
position = 1
for op in range(ops_per_job[line - 1]):
num_options = int(table2D[line][position])
position += 1
machine_ops = [table2D[line][position + 2 * i:position + 2 * (i + 1)] for i in range(num_options)]
position += 2 * num_options
machine_times.append(machine_ops)
job_machine_times.append(machine_times)
return table2D, num_jobs, num_machines, avg_ops_per_machine, ops_per_job, job_machine_times
# Define possible speeds
def get_possible_speeds():
return [1.0, 1.5, 2.0]
# Generate a random schedule
def generate_random_schedule(num_jobs, job_machine_times):
speeds = get_possible_speeds()
ops_per_job = [0] * num_jobs
schedule = []
while any(job_machine_times):
job = choice([i for i, job in enumerate(job_machine_times) if job])
ops_per_job[job] += 1
machines = job_machine_times[job][0]
machine = choice(machines)[0]
speed = choice(speeds)
schedule.append([job + 1, ops_per_job[job], machine, speed])
del job_machine_times[job][0]
return schedule
# Calculate processing times and create a schedule
def create_schedule(schedule, num_jobs, num_machines, job_machine_times):
job_times = [0] * num_jobs
machine_times = [0] * num_machines
result = []
while schedule:
job, op, machine, speed = schedule.pop(0)
machine = int(machine)
machine_ops = job_machine_times[job - 1][op - 1]
proc_time = float(next(time for m, time in machine_ops if int(m) == machine)) / speed
start_time = max(job_times[job - 1], machine_times[machine - 1])
end_time = start_time + proc_time
job_times[job - 1] = end_time
machine_times[machine - 1] = end_time
result.append([job, op, machine, speed, proc_time, start_time, end_time])
return result
# Save results by machine and job
def get_results_by_machine(result, num_machines):
result_by_machine = [[] for _ in range(num_machines)]
for entry in result:
result_by_machine[entry[2] - 1].append(entry)
return result_by_machine
def get_results_by_job(result, num_jobs):
result_by_job = [[] for _ in range(num_jobs)]
for entry in result:
result_by_job[entry[0] - 1].append(entry)
return result_by_job
# Calculate performance metrics
def calculate_Cmax(result):
return max(entry[6] for entry in result)
def calculate_standby_times(result_by_machine, Cmax):
standby_times = []
for machine in result_by_machine:
if not machine:
standby_times.append(Cmax)
else:
standby = sum(machine[i + 1][5] - machine[i][6] for i in range(len(machine) - 1))
standby += machine[0][5] + (Cmax - machine[-1][6])
standby_times.append(standby)
return standby_times
def calculate_energy(result_by_machine, Cmax):
wait_times = calculate_standby_times(result_by_machine, Cmax)
TEC = []
standby_energy = 1
for i, machine in enumerate(result_by_machine):
standby_energy_total = wait_times[i] * standby_energy
operational_energy_total = sum(4 * entry[4] * entry[3] ** 2 for entry in machine)
TEC.append(standby_energy_total + operational_energy_total)
return TEC, sum(TEC)
def calculate_workload_balance(result_by_machine):
workload = [sum(entry[4] for entry in machine) for machine in result_by_machine]
avg_workload = sum(workload) / len(result_by_machine)
return sqrt(sum((wl - avg_workload) ** 2 for wl in workload))
# Operators
def balance_workload(result_by_machine, schedule, job_machine_times):
workload = [sum(entry[4] for entry in machine) for machine in result_by_machine]
max_workload_machine = workload.index(max(workload)) + 1
candidate_ops = [entry for entry in schedule if int(entry[2]) == max_workload_machine]
if not candidate_ops:
print("\n" + "-" * 100 + "\nNo changes possible\n" + "-" * 100 + "\n")
return schedule
op_to_move = choice(candidate_ops)
job, op, _, speed = op_to_move
possible_machines = [int(machine[0]) for machine in job_machine_times[job - 1][op - 1]]
min_workload_machine = min(possible_machines, key=lambda m: workload[m - 1])
op_to_move[2] = str(min_workload_machine)
print(f"\n{'-' * 100}\nJob: {job}, Operation: {op}, moved from machine {max_workload_machine} to {min_workload_machine}\n{'-' * 100}\n")
return schedule
def swap_operations(schedule, num_jobs):
mod_schedule = deepcopy(schedule)
op1, op2 = randint(0, len(mod_schedule) - 1), randint(0, len(mod_schedule) - 1)
mod_schedule[op1], mod_schedule[op2] = mod_schedule[op2], mod_schedule[op1]
while not is_valid_schedule(mod_schedule, num_jobs):
mod_schedule = deepcopy(schedule)
op1, op2 = randint(0, len(mod_schedule) - 1), randint(0, len(mod_schedule) - 1)
mod_schedule[op1], mod_schedule[op2] = mod_schedule[op2], mod_schedule[op1]
print(f"\nOperation {schedule[op1][1]} of job {schedule[op1][0]} swapped with operation {schedule[op2][1]} of job {schedule[op2][0]}\n")
return mod_schedule
def is_valid_schedule(schedule, num_jobs):
expected_ops = [1] * num_jobs
for job, op, *_ in schedule:
if op != expected_ops[job - 1]:
return False
expected_ops[job - 1] += 1
return True
def change_speed(schedule, job_num, op_num):
mod_schedule = deepcopy(schedule)
speeds = get_possible_speeds()
for i, entry in enumerate(mod_schedule):
if entry[0] == job_num and entry[1] == op_num:
current_speed = entry[3]
new_speed = choice([s for s in speeds if s != current_speed])
entry[3] = new_speed
print(f"Changed speed of job {job_num}, operation {op_num}, from {current_speed} to {new_speed}")
break
return mod_schedule
# Display results
def display_results_by_job(results_by_job, num_jobs):
print("\nSchedule results by job [job, operation, machine, speed, processing time, start, end]:")
for i in range(num_jobs):
print(f"Job {i + 1}: {results_by_job[i]}")
def display_results_by_machine(results_by_machine, num_machines):
print("\nSchedule results by machine [job, operation, machine, speed, processing time, start, end]:")
for i in range(num_machines):
print(f"Machine {i + 1}: {results_by_machine[i]}")
def display_TEC(TEC_by_machine, TEC_total):
print(f"TEC by machine:\n{TEC_by_machine}\nTotal TEC: {TEC_total}")
# Initialize parameters
def initialize_parameters():
population_size = 40
num_memeplexes = 5
num_iterations = 5
memeplex_size = ceil(population_size / num_memeplexes)
return population_size, num_memeplexes, num_iterations, memeplex_size
# Generate initial population
def generate_initial_population(population_size, job_machine_times):
population = []
for _ in range(population_size):
schedule = generate_random_schedule(num_jobs, deepcopy(job_machine_times))
result = create_schedule(schedule, num_jobs, num_machines, job_machine_times)
result_by_machine = get_results_by_machine(result, num_machines)
Cmax = calculate_Cmax(result)
TEC, _ = calculate_energy(result_by_machine, Cmax)
WB = calculate_workload_balance(result_by_machine)
population.append([result, TEC, WB])
return population
# Generate non-dominated set
def generate_omega(population):
omega = []
for i, sol_i in enumerate(population):
TEC_i, WB_i = sol_i[1], sol_i[2]
if all(TEC_i < sol_j[1] or WB_i < sol_j[2] for j, sol_j in enumerate(population) if i != j):
omega.append(sol_i)
return omega
# Merge population and omega
def merge_population_and_omega(population, omega):
return population + omega
# Construct memeplexes
def construct_memeplexes(num_memeplexes, P_barre, memeplex_size):
memeplexes = [[] for _ in range(num_memeplexes)]
while P_barre:
for u in range(num_memeplexes):
if len(P_barre) > 1:
x1, x2 = choice(P_barre), choice(P_barre)
while x1 == x2:
x2 = choice(P_barre)
selected = x1 if (x1[1] < x2[1] and x1[2] < x2[2]) else x2
memeplexes[u].append(selected)
P_barre.remove(selected)
elif P_barre:
memeplexes[u].append(P_barre.pop())
return memeplexes
# Global search operators
def swap_operations_globally(x1, xbest):
delta = 0.5
new_list = []
x, xb = deepcopy(x1), deepcopy(xbest)
for i in range(len(x[0])):
if random() < delta:
new_list.append(xb[0].pop(0))
else:
new_list.append(x[0].pop(0))
return new_list
def swap_machines_globally(x1, xbest):
g1, g2 = randint(0, len(x1[0]) - 2), randint(g1 + 1, len(x1[0]) - 1)
return [xb if g1 <= i <= g2 else x for i, (x, xb) in enumerate(zip(x1[0], xbest[0]))]
def swap_speeds_globally(x1, xbest):
g1, g2 = randint(0, len(x1[0]) - 2), randint(g1 + 1, len(x1[0]) - 1)
return [xb if g1 <= i <= g2 else x for i, (x, xb) in enumerate(zip(x1[0], xbest[0]))]
# Local search operators
def insert_operation(xbest):
x = deepcopy(xbest)
simple_x = [op[0] for op in x[0]]
j, k = randint(0, len(simple_x) - 1), randint(0, len(simple_x) - 1)
simple_x.insert(k, simple_x.pop(j))
new_x = [[job, op] for job, op in enumerate(simple_x, 1)]
for i in range(num_jobs + 1):
count = 1
for job in new_x:
if job[0] == i:
job[1] = count
count += 1
for job in new_x:
for op in x[0]:
if job[0] == op[0] and job[1] == op[1]:
job.extend(op[2:])
return new_x
def change_machine_locally(xbest):
x = deepcopy(xbest)
ops = [randint(0, len(x[0]) - 1) for _ in range(randint(1, len(x[0])))]
new_x = [[job, op, (right_machine(job, op, machine, speed) if i in ops else machine), speed] for i, (job, op, machine, speed) in enumerate(x[0])]
return new_x
def change_speed_locally(xbest):
x = deepcopy(xbest)
ops = [randint(0, len(x[0]) - 1) for _ in range(randint(1, len(x[0])))]
new_x = [[job, op, machine, (right_speed(speed) if i in ops else speed)] for i, (job, op, machine, speed) in enumerate(x[0])]
return new_x
# Randomly select x and xb
def select_randomly(memeplex, memeplex_num):
copy_memeplex = deepcopy(memeplex[memeplex_num])
while True:
xb = choice(copy_memeplex)
copy_memeplex.remove(xb)
if all(xb[1] < x[1] or xb[2] < x[2] for x in memeplex[memeplex_num]):
break
x = choice([x for x in memeplex[memeplex_num] if x != xb])
return x, xb
# Create final schedule
def create_final_schedule(schedule, num_jobs, num_machines, job_machine_times):
result = create_schedule(schedule, num_jobs, num_machines, job_machine_times)
result_by_machine = get_results_by_machine(result, num_machines)
Cmax = calculate_Cmax(result)
TEC, _ = calculate_energy(result_by_machine, Cmax)
WB = calculate_workload_balance(result_by_machine)
return [result, TEC, WB]
# Search process within memeplex
def search_within_memeplex(memeplex, num_iterations, memeplex_num, beta, nu, num_machines, num_jobs, omega, max_omega_size):
for _ in range(num_iterations):
x1, xbest = select_randomly(memeplex, memeplex_num)
if random() < beta:
new_schedule = swap_operations_globally(x1, xbest)
elif random() < nu:
new_schedule = swap_machines_globally(x1, xbest)
else:
new_schedule = swap_speeds_globally(x1, xbest)
z = create_final_schedule(new_schedule, num_jobs, num_machines, job_machine_times)
if z[1] < xbest[1] or z[2] < xbest[2]:
if all(z[1] < o[1] and z[2] < o[2] for o in omega):
omega.append(z)
if len(omega) > max_omega_size:
crowding_distance = lambda sol: sum(abs(sol[i][j] - sol[i - 1][j]) for i in range(1, len(sol)) for j in [1, 2])
omega = sorted(omega, key=crowding_distance, reverse=True)[:max_omega_size]
memeplex[memeplex_num][memeplex[memeplex_num].index(xbest)] = z
return omega
# SFLA algorithm
def sfla():
population_size, num_memeplexes, num_iterations, memeplex_size = initialize_parameters()
population = generate_initial_population(population_size, job_machine_times)
omega = generate_omega(population)
P_barre = merge_population_and_omega(population, omega)
beta, nu = 0.5, 0.8
max_omega_size = 10
num_generations = 1
for _ in range(num_generations):
if _ > 0:
P_barre = [x for sublist in memeplex for x in sublist] + omega
memeplex = construct_memeplexes(num_memeplexes, P_barre, memeplex_size)
for memeplex_num in range(num_memeplexes):
omega = search_within_memeplex(memeplex, num_iterations, memeplex_num, beta, nu, num_machines, num_jobs, omega, max_omega_size)
return omega
# Final display of results
def display_final_results():
omega = sfla()
for i, solution in enumerate(omega):
print(f"Solution {i}: TEC = {solution[1]}, WB = {solution[2]}")
Cmax = calculate_Cmax(omega[0][0])
display_results_by_machine(get_results_by_machine(omega[0][0], num_machines), num_machines)
TEC_by_machine, total_TEC = calculate_energy(get_results_by_machine(omega[0][0], num_machines), Cmax)
print(f"TEC by machine: {TEC_by_machine}\nTotal TEC: {total_TEC}")
# Execute the final display
display_final_results()