-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tree.py
216 lines (174 loc) · 7.47 KB
/
train_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import paddle
import paddle.vision.transforms as transforms
import argpar
import os
import copy
import paddle.nn as nn
from Forest_to_tree import ForestNet
from tensorboardX import SummaryWriter
import time
from utils.logger import Logger, savefig
from utils.misc import AverageMeter
from utils.util import accuracy, save_checkpoint, adjust_learning_rate2 # , accuracy_stage2
import paddle.vision.datasets as datasets
from dataset import CIFAR100_IncrementalDataset, CIFAR10_, BatchData
import matplotlib.pyplot as plt
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
"""
树结构的训练
"""
def validate(val_loader, model, criterion, epoch):
batch_time = AverageMeter() # AverageMeter可以记录当前的输出,累加到某个变量之中,然后根据需要可以打印出历史上的平均等信息
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.eval()
with paddle.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda()
# output = model(input, 1, True)
output = model(input, 10 / (epoch + 1), True)
loss = criterion(output, target.squeeze())
prec1 = accuracy(output, target.squeeze())
losses.update(loss.item(), paddle.shape(input)[0])
top1.update(prec1, paddle.shape(input)[0])
loss_avg = losses.avg
loss_avg = float(loss_avg[0])
prec1_avg = top1.avg
prec1_avg = float(prec1_avg[0])
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % 100 == 0 or (i + 1) == len(val_loader):
print(
'({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Loss: {loss:.4f} | top1: {top1:.4f}'.format(
batch=i + 1,
size=len(val_loader),
data=data_time.avg,
bt=batch_time.avg,
loss=loss_avg,
top1=prec1_avg,
))
# print(prec1_avg)
return (loss_avg, prec1_avg)
def train(train_loader, model, criterion, optimizer, epoch, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda()
# output = model(input, 1, True)
output = model(input, 10 / (epoch + 1), True)
loss = criterion(output, target.squeeze())
# print(loss)
# exit(-1)
prec1 = accuracy(output, target.squeeze())
losses.update(loss.item(), paddle.shape(input)[0])
top1.update(prec1, paddle.shape(input)[0])
loss_avg = losses.avg
loss_avg = float(loss_avg[0])
prec1_avg = top1.avg
prec1_avg = float(prec1_avg[0])
optimizer.clear_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % 100 == 0 or (i + 1) == len(train_loader):
print('({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Loss: {loss:.4f} | top1: {top1:.4f}'.format(
batch=i + 1,
size=len(train_loader),
data=data_time.avg,
bt=batch_time.avg,
loss=loss_avg,
top1=prec1_avg,
))
return (loss_avg, prec1_avg)
if __name__ == '__main__':
args = argpar.get_args()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.Cifar100(
args.root,
mode='train',
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
# transforms.RandomRotation(15),
transforms.ToTensor(),
normalize,
]))
valid_dataset = datasets.Cifar100(
args.root,
mode='test',
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
train_loader = paddle.io.DataLoader(
# BatchData(train_x, train_y, input_transform),
train_dataset,
batch_size=args.train_batch, shuffle=True,
num_workers=args.workers)
val_loader = paddle.io.DataLoader(
# BatchData(val_x, val_y, input_transform_eval),
valid_dataset,
batch_size=128, shuffle=False,
num_workers=args.workers)
model = ForestNet('CIFAR100', 100, 256)
# if paddle.cuda.is_available():
# model = model.cuda()
"""
branch_params_list = list(map(id, model.branch_2.parameters())) + list(map(id, model.branch_3.parameters())) + list(
map(id, model.branch_4.parameters()))
# global_params = filter(lambda p: id(p) not in branch_params_list, model.parameters())
branch_params = filter(lambda p: id(p) in branch_params_list, model.parameters())
main_params = filter(lambda p: id(p) not in branch_params_list, model.parameters())
for i in branch_params:
i.optimize_attr['learning_rate'] = args.lr_global
for i in main_params:
i.optimize_attr['learning_rate'] = args.lr_global / 100
"""
optimizer = paddle.optimizer.Momentum(parameters=model.parameters(),
learning_rate=args.lr_global,
# args.lr_stage2/10,
momentum=args.momentum,
weight_decay=1e-4)
criterion = nn.NLLLoss()
best_prec1 = 0
writer = SummaryWriter(os.path.join(args.checkpoint, 'holly_logs_cifar100_tree_256_b'))
logger = Logger(os.path.join(args.checkpoint, 'holly_log_cifar100_tree_256_b.txt'), title='cifar100_tree')
logger.set_names(['Global Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
for epoch in range(args.start_epoch, args.epochs):
global_lr = adjust_learning_rate2(args, optimizer, epoch)
print('\nEpoch: [%d | %d] global_LR: %f' % (epoch + 1, args.epochs, global_lr))
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, writer)
val_loss, prec1 = validate(val_loader, model, criterion, epoch)
logger.append([global_lr, train_loss, val_loss, train_acc, prec1])
writer.add_scalar('global_learning rate', global_lr, epoch + 1)
writer.add_scalar('train_loss', train_loss, epoch + 1)
writer.add_scalar('validation_loss', val_loss, epoch + 1)
writer.add_scalar('train accuracy', train_acc, epoch + 1)
writer.add_scalar('validation accuracy', prec1, epoch + 1)
# if epoch>30:#:best_prec1>85 and prec1<80:
# break
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint, filename='hollylee_checkpoint_cifar100_tree_256_b.pth.tar',
best_filename='model_best_cifar100_tree_256_b.pth.tar')
print('Best accuracy:')
print(best_prec1)
logger.close()
writer.close()