-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtf_agents_ysp.py
322 lines (279 loc) · 11.3 KB
/
tf_agents_ysp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# coding=utf-8
# Copyright 2018 The TF-Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Train and Eval PPO.
To run:
```bash
tensorboard --logdir $HOME/tmp/ppo/gym/HalfCheetah-v2/ --port 2223 &
python tf_agents/agents/ppo/examples/v2/train_eval_clip_agent.py \
--root_dir=$HOME/tmp/ppo/gym/HalfCheetah-v2/ \
--logtostderr
```
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import time
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from tf_agents.agents.ppo import ppo_clip_agent
from tf_agents.drivers import dynamic_episode_driver
from tf_agents.environments import parallel_py_environment
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import actor_distribution_network
from tf_agents.networks import actor_distribution_rnn_network
from tf_agents.networks import value_network
from tf_agents.networks import value_rnn_network
from tf_agents.policies import policy_saver
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.system import system_multiprocessing as multiprocessing
from tf_agents.utils import common
flags.DEFINE_string('root_dir', os.getenv('TEST_UNDECLARED_OUTPUTS_DIR'),
'Root directory for writing logs/summaries/checkpoints.')
flags.DEFINE_string('env_name', 'HalfCheetah-v2', 'Name of an environment')
flags.DEFINE_integer('replay_buffer_capacity', 1001,
'Replay buffer capacity per env.')
flags.DEFINE_integer('num_parallel_environments', 30,
'Number of environments to run in parallel')
flags.DEFINE_integer('num_environment_steps', 25000000,
'Number of environment steps to run before finishing.')
flags.DEFINE_integer('num_epochs', 25,
'Number of epochs for computing policy updates.')
flags.DEFINE_integer(
'collect_episodes_per_iteration', 30,
'The number of episodes to take in the environment before '
'each update. This is the total across all parallel '
'environments.')
flags.DEFINE_integer('num_eval_episodes', 30,
'The number of episodes to run eval on.')
flags.DEFINE_boolean('use_rnns', False,
'If true, use RNN for policy and value function.')
FLAGS = flags.FLAGS
@gin.configurable
def train_eval(
root_dir,
env_name='HalfCheetah-v2',
env_load_fn=suite_gym.load,
random_seed=None,
# TODO(b/127576522): rename to policy_fc_layers.
actor_fc_layers=(200, 100),
value_fc_layers=(200, 100),
use_rnns=False,
# Params for collect
num_environment_steps=250000000,
collect_episodes_per_iteration=30,
num_parallel_environments=30,
replay_buffer_capacity=1001, # Per-environment
# Params for train
num_epochs=25,
learning_rate=1e-3,
# Params for eval
num_eval_episodes=30,
eval_interval=500,
# Params for summaries and logging
train_checkpoint_interval=500,
policy_checkpoint_interval=500,
log_interval=50,
summary_interval=50,
summaries_flush_secs=1,
use_tf_functions=True,
debug_summaries=False,
summarize_grads_and_vars=False):
"""A simple train and eval for PPO."""
if root_dir is None:
raise AttributeError('train_eval requires a root_dir.')
root_dir = os.path.expanduser(root_dir)
train_dir = os.path.join(root_dir, 'train')
eval_dir = os.path.join(root_dir, 'eval')
saved_model_dir = os.path.join(root_dir, 'policy_saved_model')
train_summary_writer = tf.compat.v2.summary.create_file_writer(
train_dir, flush_millis=summaries_flush_secs * 1000)
train_summary_writer.set_as_default()
eval_summary_writer = tf.compat.v2.summary.create_file_writer(
eval_dir, flush_millis=summaries_flush_secs * 1000)
eval_metrics = [
tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
]
global_step = tf.compat.v1.train.get_or_create_global_step()
with tf.compat.v2.summary.record_if(
lambda: tf.math.equal(global_step % summary_interval, 0)):
if random_seed is not None:
tf.compat.v1.set_random_seed(random_seed)
tf_env = (
parallel_py_environment.ParallelPyEnvironment(
[lambda: env_load_fn(env_name)] * num_parallel_environments))
# tf_env = env_load_fn(env_name)
tf_env = tf_py_environment.TFPyEnvironment(tf_env)
eval_tf_env = tf_py_environment.TFPyEnvironment(env_load_fn(env_name))
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
if use_rnns:
actor_net = actor_distribution_rnn_network.ActorDistributionRnnNetwork(
tf_env.observation_spec(),
tf_env.action_spec(),
input_fc_layer_params=actor_fc_layers,
output_fc_layer_params=None)
value_net = value_rnn_network.ValueRnnNetwork(
tf_env.observation_spec(),
input_fc_layer_params=value_fc_layers,
output_fc_layer_params=None)
else:
actor_net = actor_distribution_network.ActorDistributionNetwork(
tf_env.observation_spec(),
tf_env.action_spec(),
fc_layer_params=actor_fc_layers,
activation_fn=tf.keras.activations.tanh)
value_net = value_network.ValueNetwork(
tf_env.observation_spec(),
fc_layer_params=value_fc_layers,
activation_fn=tf.keras.activations.tanh)
tf_agent = ppo_clip_agent.PPOClipAgent(
tf_env.time_step_spec(),
tf_env.action_spec(),
optimizer,
actor_net=actor_net,
value_net=value_net,
entropy_regularization=0.0,
importance_ratio_clipping=0.2,
normalize_observations=False,
normalize_rewards=False,
use_gae=True,
num_epochs=num_epochs,
debug_summaries=debug_summaries,
summarize_grads_and_vars=summarize_grads_and_vars,
train_step_counter=global_step)
tf_agent.initialize()
environment_steps_metric = tf_metrics.EnvironmentSteps()
step_metrics = [
tf_metrics.NumberOfEpisodes(),
environment_steps_metric,
]
train_metrics = step_metrics + [
tf_metrics.AverageReturnMetric(
batch_size=num_parallel_environments),
tf_metrics.AverageEpisodeLengthMetric(
batch_size=num_parallel_environments),
]
eval_policy = tf_agent.policy
collect_policy = tf_agent.collect_policy
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
tf_agent.collect_data_spec,
batch_size=num_parallel_environments,
max_length=replay_buffer_capacity)
train_checkpointer = common.Checkpointer(
ckpt_dir=train_dir,
agent=tf_agent,
global_step=global_step,
metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
policy_checkpointer = common.Checkpointer(
ckpt_dir=os.path.join(train_dir, 'policy'),
policy=eval_policy,
global_step=global_step)
saved_model = policy_saver.PolicySaver(
eval_policy, train_step=global_step)
train_checkpointer.initialize_or_restore()
collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
tf_env,
collect_policy,
observers=[replay_buffer.add_batch] + train_metrics,
num_episodes=collect_episodes_per_iteration)
def train_step():
trajectories = replay_buffer.gather_all()
return tf_agent.train(experience=trajectories)
if use_tf_functions:
# TODO(b/123828980): Enable once the cause for slowdown was identified.
collect_driver.run = common.function(collect_driver.run, autograph=False)
tf_agent.train = common.function(tf_agent.train, autograph=False)
train_step = common.function(train_step)
collect_time = 0
train_time = 0
timed_at_step = global_step.numpy()
while environment_steps_metric.result() < num_environment_steps:
global_step_val = global_step.numpy()
if global_step_val % eval_interval == 0:
metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
start_time = time.time()
print("===Collect running")
collect_driver.run()
print("===Collect finished")
collect_time += time.time() - start_time
start_time = time.time()
total_loss, _ = train_step()
replay_buffer.clear()
train_time += time.time() - start_time
for train_metric in train_metrics:
train_metric.tf_summaries(
train_step=global_step, step_metrics=step_metrics)
if global_step_val % log_interval == 0:
logging.info('step = %d, loss = %f', global_step_val, total_loss)
steps_per_sec = (
(global_step_val - timed_at_step) / (collect_time + train_time))
logging.info('%.3f steps/sec', steps_per_sec)
logging.info('collect_time = %.3f, train_time = %.3f', collect_time,
train_time)
with tf.compat.v2.summary.record_if(True):
tf.compat.v2.summary.scalar(
name='global_steps_per_sec', data=steps_per_sec, step=global_step)
if global_step_val % train_checkpoint_interval == 0:
train_checkpointer.save(global_step=global_step_val)
if global_step_val % policy_checkpoint_interval == 0:
policy_checkpointer.save(global_step=global_step_val)
saved_model_path = os.path.join(
saved_model_dir, 'policy_' + ('%d' % global_step_val).zfill(9))
saved_model.save(saved_model_path)
timed_at_step = global_step_val
collect_time = 0
train_time = 0
# One final eval before exiting.
metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
def main(_):
logging.set_verbosity(logging.INFO)
tf.compat.v1.enable_v2_behavior()
train_eval(
FLAGS.root_dir,
env_name=FLAGS.env_name,
use_rnns=FLAGS.use_rnns,
num_environment_steps=FLAGS.num_environment_steps,
collect_episodes_per_iteration=FLAGS.collect_episodes_per_iteration,
num_parallel_environments=FLAGS.num_parallel_environments,
replay_buffer_capacity=FLAGS.replay_buffer_capacity,
num_epochs=FLAGS.num_epochs,
num_eval_episodes=FLAGS.num_eval_episodes)
if __name__ == '__main__':
flags.mark_flag_as_required('root_dir')
multiprocessing.handle_main(functools.partial(app.run, main))