diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index b2874750a777e..d0317b2fc48c9 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -158,6 +158,7 @@ steps: - python3 offline_inference_with_prefix.py - python3 llm_engine_example.py - python3 offline_inference_vision_language.py + - python3 offline_inference_vision_language_multi_image.py - python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors - python3 offline_inference_encoder_decoder.py diff --git a/docs/source/getting_started/debugging.rst b/docs/source/getting_started/debugging.rst index 117a9dd666481..31ecca1332e5d 100644 --- a/docs/source/getting_started/debugging.rst +++ b/docs/source/getting_started/debugging.rst @@ -21,7 +21,7 @@ If you have already taken care of the above issues, but the vLLM instance still With more logging, hopefully you can find the root cause of the issue. -If it crashes, and the error trace shows somewhere around ``self.graph.replay()`` in ``vllm/worker/model_runner.py``, it is a cuda error inside cudagraph. To know the particular cuda operation that causes the error, you can add ``--enforce-eager`` to the command line, or ``enforce_eager=True`` to the ``LLM`` class, to disable the cudagraph optimization. This way, you can locate the exact cuda operation that causes the error. +If it crashes, and the error trace shows somewhere around ``self.graph.replay()`` in ``vllm/worker/model_runner.py``, it is a cuda error inside cudagraph. To know the particular cuda operation that causes the error, you can add ``--enforce-eager`` to the command line, or ``enforce_eager=True`` to the :class:`~vllm.LLM` class, to disable the cudagraph optimization. This way, you can locate the exact cuda operation that causes the error. Here are some common issues that can cause hangs: diff --git a/docs/source/getting_started/quickstart.rst b/docs/source/getting_started/quickstart.rst index 89bdc247c5e8e..80b19ac672936 100644 --- a/docs/source/getting_started/quickstart.rst +++ b/docs/source/getting_started/quickstart.rst @@ -24,7 +24,9 @@ Offline Batched Inference We first show an example of using vLLM for offline batched inference on a dataset. In other words, we use vLLM to generate texts for a list of input prompts. -Import ``LLM`` and ``SamplingParams`` from vLLM. The ``LLM`` class is the main class for running offline inference with vLLM engine. The ``SamplingParams`` class specifies the parameters for the sampling process. +Import :class:`~vllm.LLM` and :class:`~vllm.SamplingParams` from vLLM. +The :class:`~vllm.LLM` class is the main class for running offline inference with vLLM engine. +The :class:`~vllm.SamplingParams` class specifies the parameters for the sampling process. .. code-block:: python @@ -42,7 +44,7 @@ Define the list of input prompts and the sampling parameters for generation. The ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) -Initialize vLLM's engine for offline inference with the ``LLM`` class and the `OPT-125M model `_. The list of supported models can be found at :ref:`supported models `. +Initialize vLLM's engine for offline inference with the :class:`~vllm.LLM` class and the `OPT-125M model `_. The list of supported models can be found at :ref:`supported models `. .. code-block:: python diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 2c20b6e48407d..084be1e2a4f8e 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -194,12 +194,12 @@ Multimodal Language Models * - Architecture - Models - - Supported Modalities + - Modalities - Example HuggingFace Models - :ref:`LoRA ` * - :code:`Blip2ForConditionalGeneration` - BLIP-2 - - Image + - Image\ :sup:`E` - :code:`Salesforce/blip2-opt-2.7b`, :code:`Salesforce/blip2-opt-6.7b`, etc. - * - :code:`ChameleonForConditionalGeneration` @@ -214,40 +214,43 @@ Multimodal Language Models - * - :code:`InternVLChatModel` - InternVL2 - - Image + - Image\ :sup:`E` - :code:`OpenGVLab/InternVL2-4B`, :code:`OpenGVLab/InternVL2-8B`, etc. - * - :code:`LlavaForConditionalGeneration` - LLaVA-1.5 - - Image + - Image\ :sup:`E` - :code:`llava-hf/llava-1.5-7b-hf`, :code:`llava-hf/llava-1.5-13b-hf`, etc. - * - :code:`LlavaNextForConditionalGeneration` - LLaVA-NeXT - - Image + - Image\ :sup:`E+` - :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc. - * - :code:`PaliGemmaForConditionalGeneration` - PaliGemma - - Image + - Image\ :sup:`E` - :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc. - * - :code:`Phi3VForCausalLM` - Phi-3-Vision, Phi-3.5-Vision - - Image + - Image\ :sup:`E+` - :code:`microsoft/Phi-3-vision-128k-instruct`, :code:`microsoft/Phi-3.5-vision-instruct` etc. - * - :code:`MiniCPMV` - MiniCPM-V - - Image + - Image\ :sup:`+` - :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, :code:`openbmb/MiniCPM-V-2_6`, etc. - * - :code:`UltravoxModel` - Ultravox - - Audio + - Audio\ :sup:`E+` - :code:`fixie-ai/ultravox-v0_3` - +| :sup:`E` Pre-computed embeddings can be inputted for this modality. +| :sup:`+` Multiple items can be inputted per text prompt for this modality. + .. note:: For :code:`openbmb/MiniCPM-V-2`, the official repo doesn't work yet, so we need to use a fork (:code:`HwwwH/MiniCPM-V-2`) for now. For more details, please see: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 diff --git a/docs/source/models/vlm.rst b/docs/source/models/vlm.rst index 236e37b51d470..08db891665044 100644 --- a/docs/source/models/vlm.rst +++ b/docs/source/models/vlm.rst @@ -9,26 +9,23 @@ This document shows you how to run and serve these models using vLLM. .. important:: We are actively iterating on VLM support. Expect breaking changes to VLM usage and development in upcoming releases without prior deprecation. - Currently, the support for vision language models on vLLM has the following limitations: - - * Only single image input is supported per text prompt. - We are continuously improving user & developer experience for VLMs. Please `open an issue on GitHub `_ if you have any feedback or feature requests. -Offline Batched Inference -------------------------- +Offline Inference +----------------- + +Single-image input +^^^^^^^^^^^^^^^^^^ -To initialize a VLM, the aforementioned arguments must be passed to the ``LLM`` class for instantiating the engine. +The :class:`~vllm.LLM` class can be instantiated in much the same way as language-only models. .. code-block:: python llm = LLM(model="llava-hf/llava-1.5-7b-hf") -.. important:: +.. note:: We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow - the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified as we now calculate that - internally for each model. - + the above snippet. Specifically, ``image_feature_size`` can no longer be specified as we now calculate that internally for each model. To pass an image to the model, note the following in :class:`vllm.inputs.PromptInputs`: @@ -86,61 +83,117 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptI A code example can be found in `examples/offline_inference_vision_language.py `_. +Multi-image input +^^^^^^^^^^^^^^^^^ -Online OpenAI Vision API Compatible Inference ----------------------------------------------- +Multi-image input is only supported for a subset of VLMs, as shown :ref:`here `. -You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API `_. +To enable multiple multi-modal items per text prompt, you have to set ``limit_mm_per_prompt`` for the :class:`~vllm.LLM` class. -.. note:: - Currently, vLLM supports only **single** ``image_url`` input per ``messages``. Support for multi-image inputs will be - added in the future. +.. code-block:: python -Below is an example on how to launch the same ``llava-hf/llava-1.5-7b-hf`` with vLLM API server. + llm = LLM( + model="microsoft/Phi-3.5-vision-instruct", + trust_remote_code=True, # Required to load Phi-3.5-vision + max_model_len=4096, # Otherwise, it may not fit in smaller GPUs + limit_mm_per_prompt={"image": 2}, # The maximum number to accept + ) -.. important:: - Since OpenAI Vision API is based on `Chat `_ API, a chat template - is **required** to launch the API server if the model's tokenizer does not come with one. In this example, we use the - HuggingFace Llava chat template that you can find in the example folder `here `_. +Instead of passing in a single image, you can pass in a list of images. + +.. code-block:: python + + # Refer to the HuggingFace repo for the correct format to use + prompt = "<|user|>\n\n\nWhat is the content of each image?<|end|>\n<|assistant|>\n" + + # Load the images using PIL.Image + image1 = PIL.Image.open(...) + image2 = PIL.Image.open(...) + + outputs = llm.generate({ + "prompt": prompt, + "multi_modal_data": { + "image": [image1, image2] + }, + }) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + +A code example can be found in `examples/offline_inference_vision_language_multi_image.py `_. + +Online Inference +---------------- + +OpenAI Vision API +^^^^^^^^^^^^^^^^^ + +You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API `_. + +Below is an example on how to launch the same ``microsoft/Phi-3.5-vision-instruct`` with vLLM's OpenAI-compatible API server. .. code-block:: bash - vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja + vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \ + --trust-remote-code --limit-mm-per-prompt image=2 .. important:: - We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow - the above snippet. Specifically, ``image_feature_size`` is no longer required to be specified as we now calculate that - internally for each model. + Since OpenAI Vision API is based on `Chat Completions `_ API, + a chat template is **required** to launch the API server. + + Although Phi-3.5-Vision comes with a chat template, for other models you may have to provide one if the model's tokenizer does not come with it. + The chat template can be inferred based on the documentation on the model's HuggingFace repo. + For example, LLaVA-1.5 (``llava-hf/llava-1.5-7b-hf``) requires a chat template that can be found `here `_. To consume the server, you can use the OpenAI client like in the example below: .. code-block:: python from openai import OpenAI + openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" + client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) + + # Single-image input inference + image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" + chat_response = client.chat.completions.create( - model="llava-hf/llava-1.5-7b-hf", + model="microsoft/Phi-3.5-vision-instruct", messages=[{ "role": "user", "content": [ # NOTE: The prompt formatting with the image token `` is not needed # since the prompt will be processed automatically by the API server. - {"type": "text", "text": "What's in this image?"}, - { - "type": "image_url", - "image_url": { - "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", - }, - }, + {"type": "text", "text": "What’s in this image?"}, + {"type": "image_url", "image_url": {"url": image_url}}, ], }], ) - print("Chat response:", chat_response) + print("Chat completion output:", chat_response.choices[0].message.content) + + # Multi-image input inference + image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg" + image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg" + + chat_response = client.chat.completions.create( + model="microsoft/Phi-3.5-vision-instruct", + messages=[{ + "role": "user", + "content": [ + {"type": "text", "text": "What are the animals in these images?"}, + {"type": "image_url", "image_url": {"url": image_url_duck}}, + {"type": "image_url", "image_url": {"url": image_url_lion}}, + ], + }], + ) + print("Chat completion output:", chat_response.choices[0].message.content) + A full code example can be found in `examples/openai_vision_api_client.py `_. diff --git a/examples/offline_inference_vision_language_multi_image.py b/examples/offline_inference_vision_language_multi_image.py new file mode 100644 index 0000000000000..73543ab5da2b4 --- /dev/null +++ b/examples/offline_inference_vision_language_multi_image.py @@ -0,0 +1,95 @@ +""" +This example shows how to use vLLM for running offline inference with +multi-image input on vision language models, using the chat template defined +by the model. +""" +from argparse import Namespace +from typing import List + +from vllm import LLM +from vllm.multimodal.utils import fetch_image +from vllm.utils import FlexibleArgumentParser + +QUESTION = "What is the content of each image?" +IMAGE_URLS = [ + "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg", + "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg", +] + + +def _load_phi3v(image_urls: List[str]): + return LLM( + model="microsoft/Phi-3.5-vision-instruct", + trust_remote_code=True, + max_model_len=4096, + limit_mm_per_prompt={"image": len(image_urls)}, + ) + + +def run_phi3v_generate(question: str, image_urls: List[str]): + llm = _load_phi3v(image_urls) + + placeholders = "\n".join(f"<|image_{i}|>" + for i, _ in enumerate(image_urls, start=1)) + prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n" + + outputs = llm.generate({ + "prompt": prompt, + "multi_modal_data": { + "image": [fetch_image(url) for url in image_urls] + }, + }) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + + +def run_phi3v_chat(question: str, image_urls: List[str]): + llm = _load_phi3v(image_urls) + + outputs = llm.chat([{ + "role": + "user", + "content": [ + { + "type": "text", + "text": question, + }, + *({ + "type": "image_url", + "image_url": { + "url": image_url + }, + } for image_url in image_urls), + ], + }]) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + + +def main(args: Namespace): + method = args.method + + if method == "generate": + run_phi3v_generate(QUESTION, IMAGE_URLS) + elif method == "chat": + run_phi3v_chat(QUESTION, IMAGE_URLS) + else: + raise ValueError(f"Invalid method: {method}") + + +if __name__ == "__main__": + parser = FlexibleArgumentParser( + description='Demo on using vLLM for offline inference with ' + 'vision language models that support multi-image input') + parser.add_argument("--method", + type=str, + default="generate", + choices=["generate", "chat"], + help="The method to run in `vllm.LLM`.") + + args = parser.parse_args() + main(args) diff --git a/examples/openai_vision_api_client.py b/examples/openai_vision_api_client.py index e1d4055763e5f..1ba702ef019e4 100644 --- a/examples/openai_vision_api_client.py +++ b/examples/openai_vision_api_client.py @@ -27,9 +27,10 @@ models = client.models.list() model = models.data[0].id +# Single-image input inference image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" -# Use image url in the payload +## Use image url in the payload chat_completion_from_url = client.chat.completions.create( messages=[{ "role": @@ -52,10 +53,10 @@ ) result = chat_completion_from_url.choices[0].message.content -print(f"Chat completion output:{result}") +print("Chat completion output:", result) -# Use base64 encoded image in the payload +## Use base64 encoded image in the payload def encode_image_base64_from_url(image_url: str) -> str: """Encode an image retrieved from a remote url to base64 format.""" @@ -122,4 +123,4 @@ def encode_image_base64_from_url(image_url: str) -> str: ) result = chat_completion_from_url.choices[0].message.content -print(f"Chat completion output:{result}") +print("Chat completion output:", result)