-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy path04_lenet5_training.py
307 lines (237 loc) · 9.48 KB
/
04_lenet5_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# -*- coding: utf-8 -*-
# (C) Copyright 2020, 2021, 2022, 2023, 2024 IBM. All Rights Reserved.
#
# Licensed under the MIT license. See LICENSE file in the project root for details.
"""aihwkit example 4: analog CNN.
Mnist dataset on a LeNet5 inspired network based on the paper:
https://www.frontiersin.org/articles/10.3389/fnins.2017.00538/full
Learning rates of η = 0.01 for all the epochs with minibatch 8.
"""
# pylint: disable=invalid-name, redefined-outer-name
import os
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
# Imports from PyTorch.
import torch
from torch import nn
from torchvision import datasets, transforms
# Imports from aihwkit.
from aihwkit.nn import AnalogConv2d, AnalogLinear, AnalogSequential
from aihwkit.optim import AnalogSGD
from aihwkit.simulator.configs import (
SingleRPUConfig,
FloatingPointRPUConfig,
ConstantStepDevice,
FloatingPointDevice,
)
from aihwkit.simulator.rpu_base import cuda
# Check device
USE_CUDA = 0
if cuda.is_compiled():
USE_CUDA = 1
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")
# Path to store datasets
PATH_DATASET = os.path.join("data", "DATASET")
# Path to store results
RESULTS = os.path.join(os.getcwd(), "results", "LENET5")
# Training parameters
SEED = 1
N_EPOCHS = 30
BATCH_SIZE = 8
LEARNING_RATE = 0.01
N_CLASSES = 10
# Select the device model to use in the training.
# * If `SingleRPUConfig(device=ConstantStepDevice())` then analog tiles with
# constant step devices will be used,
# * If `FloatingPointRPUConfig(device=FloatingPointDevice())` then standard
# floating point devices will be used
USE_ANALOG_TRAINING = False
if USE_ANALOG_TRAINING:
RPU_CONFIG = SingleRPUConfig(device=ConstantStepDevice())
else:
RPU_CONFIG = FloatingPointRPUConfig(device=FloatingPointDevice())
def load_images():
"""Load images for train from torchvision datasets."""
transform = transforms.Compose([transforms.ToTensor()])
train_set = datasets.MNIST(PATH_DATASET, download=True, train=True, transform=transform)
val_set = datasets.MNIST(PATH_DATASET, download=True, train=False, transform=transform)
train_data = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
validation_data = torch.utils.data.DataLoader(val_set, batch_size=BATCH_SIZE, shuffle=False)
return train_data, validation_data
def create_analog_network():
"""Return a LeNet5 inspired analog model."""
channel = [16, 32, 512, 128]
model = AnalogSequential(
AnalogConv2d(
in_channels=1, out_channels=channel[0], kernel_size=5, stride=1, rpu_config=RPU_CONFIG
),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2),
AnalogConv2d(
in_channels=channel[0],
out_channels=channel[1],
kernel_size=5,
stride=1,
rpu_config=RPU_CONFIG,
),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2),
nn.Tanh(),
nn.Flatten(),
AnalogLinear(in_features=channel[2], out_features=channel[3], rpu_config=RPU_CONFIG),
nn.Tanh(),
AnalogLinear(in_features=channel[3], out_features=N_CLASSES, rpu_config=RPU_CONFIG),
nn.LogSoftmax(dim=1),
)
return model
def create_sgd_optimizer(model, learning_rate):
"""Create the analog-aware optimizer.
Args:
model (nn.Module): model to be trained
learning_rate (float): global parameter to define learning rate
Returns:
nn.Module: Analog optimizer
"""
optimizer = AnalogSGD(model.parameters(), lr=learning_rate)
optimizer.regroup_param_groups(model)
return optimizer
def train_step(train_data, model, criterion, optimizer):
"""Train network.
Args:
train_data (DataLoader): Validation set to perform the evaluation
model (nn.Module): Trained model to be evaluated
criterion (nn.CrossEntropyLoss): criterion to compute loss
optimizer (Optimizer): analog model optimizer
Returns:
nn.Module, nn.Module, float: model, optimizer and loss for per epoch
"""
total_loss = 0
model.train()
for images, labels in train_data:
images = images.to(DEVICE)
labels = labels.to(DEVICE)
optimizer.zero_grad()
# Add training Tensor to the model (input).
output = model(images)
loss = criterion(output, labels)
# Run training (backward propagation).
loss.backward()
# Optimize weights.
optimizer.step()
total_loss += loss.item() * images.size(0)
epoch_loss = total_loss / len(train_data.dataset)
return model, optimizer, epoch_loss
def test_evaluation(validation_data, model, criterion):
"""Test trained network.
Args:
validation_data (DataLoader): Validation set to perform the evaluation
model (nn.Module): Trained model to be evaluated
criterion (nn.CrossEntropyLoss): criterion to compute loss
Returns:
nn.Module, float, float, float: model, loss, error, and accuracy
"""
total_loss = 0
predicted_ok = 0
total_images = 0
model.eval()
for images, labels in validation_data:
images = images.to(DEVICE)
labels = labels.to(DEVICE)
pred = model(images)
loss = criterion(pred, labels)
total_loss += loss.item() * images.size(0)
_, predicted = torch.max(pred.data, 1)
total_images += labels.size(0)
predicted_ok += (predicted == labels).sum().item()
accuracy = predicted_ok / total_images * 100
error = (1 - predicted_ok / total_images) * 100
epoch_loss = total_loss / len(validation_data.dataset)
return model, epoch_loss, error, accuracy
def training_loop(model, criterion, optimizer, train_data, validation_data, epochs, print_every=1):
"""Training loop.
Args:
model (nn.Module): Trained model to be evaluated
criterion (nn.CrossEntropyLoss): criterion to compute loss
optimizer (Optimizer): analog model optimizer
train_data (DataLoader): Validation set to perform the evaluation
validation_data (DataLoader): Validation set to perform the evaluation
epochs (int): global parameter to define epochs number
print_every (int): defines how many times to print training progress
Returns:
nn.Module, Optimizer, Tuple: model, optimizer,
and a tuple of train losses, validation losses, and test
error
"""
train_losses = []
valid_losses = []
test_error = []
# Train model
for epoch in range(0, epochs):
# Train_step
model, optimizer, train_loss = train_step(train_data, model, criterion, optimizer)
train_losses.append(train_loss)
# Validate_step
with torch.no_grad():
model, valid_loss, error, accuracy = test_evaluation(validation_data, model, criterion)
valid_losses.append(valid_loss)
test_error.append(error)
if epoch % print_every == (print_every - 1):
print(
f"{datetime.now().time().replace(microsecond=0)} --- "
f"Epoch: {epoch}\t"
f"Train loss: {train_loss:.4f}\t"
f"Valid loss: {valid_loss:.4f}\t"
f"Test error: {error:.2f}%\t"
f"Accuracy: {accuracy:.2f}%\t"
)
# Save results and plot figures
np.savetxt(os.path.join(RESULTS, "Test_error.csv"), test_error, delimiter=",")
np.savetxt(os.path.join(RESULTS, "Train_Losses.csv"), train_losses, delimiter=",")
np.savetxt(os.path.join(RESULTS, "Valid_Losses.csv"), valid_losses, delimiter=",")
plot_results(train_losses, valid_losses, test_error)
return model, optimizer, (train_losses, valid_losses, test_error)
def plot_results(train_losses, valid_losses, test_error):
"""Plot results.
Args:
train_losses (List): training losses as calculated in the training_loop
valid_losses (List): validation losses as calculated in the training_loop
test_error (List): test error as calculated in the training_loop
"""
fig = plt.plot(train_losses, "r-s", valid_losses, "b-o")
plt.title("aihwkit LeNet5")
plt.legend(fig[:2], ["Training Losses", "Validation Losses"])
plt.xlabel("Epoch number")
plt.ylabel("Loss [A.U.]")
plt.grid(which="both", linestyle="--")
plt.savefig(os.path.join(RESULTS, "test_losses.png"))
plt.close()
fig = plt.plot(test_error, "r-s")
plt.title("aihwkit LeNet5")
plt.legend(fig[:1], ["Validation Error"])
plt.xlabel("Epoch number")
plt.ylabel("Test Error [%]")
plt.yscale("log")
plt.ylim((5e-1, 1e2))
plt.grid(which="both", linestyle="--")
plt.savefig(os.path.join(RESULTS, "test_error.png"))
plt.close()
if __name__ == "__main__":
# Make sure the directory where to save the results exist.
# Results include: Loss vs Epoch graph, Accuracy vs Epoch graph and vector data.
os.makedirs(RESULTS, exist_ok=True)
torch.manual_seed(SEED)
# Load datasets.
train_data, validation_data = load_images()
# Prepare the model.
model = create_analog_network()
if USE_CUDA:
model.cuda()
print(model)
print(f"\n{datetime.now().time().replace(microsecond=0)} --- " f"Started LeNet5 Example")
optimizer = create_sgd_optimizer(model, LEARNING_RATE)
criterion = nn.CrossEntropyLoss()
model, optimizer, _ = training_loop(
model, criterion, optimizer, train_data, validation_data, N_EPOCHS
)
print(f"{datetime.now().time().replace(microsecond=0)} --- " f"Completed LeNet5 Example")