-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanisodiff.m
89 lines (76 loc) · 2.64 KB
/
anisodiff.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% ANISODIFF - Anisotropic diffusion.
%
% Usage:
% diff = anisodiff(im, niter, kappa, lambda, option)
%
% Arguments:
% im - input image
% niter - number of iterations.
% kappa - conduction coefficient 20-100 ?
% lambda - max value of .25 for stability
% option - 1 Perona Malik diffusion equation No 1
% 2 Perona Malik diffusion equation No 2
%
% Returns:
% diff - diffused image.
%
% kappa controls conduction as a function of gradient. If kappa is low
% small intensity gradients are able to block conduction and hence diffusion
% across step edges. A large value reduces the influence of intensity
% gradients on conduction.
%
% lambda controls speed of diffusion (you usually want it at a maximum of
% 0.25)
%
% Diffusion equation 1 favours high contrast edges over low contrast ones.
% Diffusion equation 2 favours wide regions over smaller ones.
% Reference:
% P. Perona and J. Malik.
% Scale-space and edge detection using ansotropic diffusion.
% IEEE Transactions on Pattern Analysis and Machine Intelligence,
% 12(7):629-639, July 1990.
%
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au
%
% June 2000 original version.
% March 2002 corrected diffusion eqn No 2.
function diff = anisodiff(im, niter, kappa, lambda, option)
if ndims(im)==3
error('Anisodiff only operates on 2D grey-scale images');
end
im = double(im);
[rows,cols] = size(im);
diff = im;
for i = 1:niter
% fprintf('\rIteration %d',i);
% Construct diffl which is the same as diff but
% has an extra padding of zeros around it.
diffl = zeros(rows+2, cols+2);
diffl(2:rows+1, 2:cols+1) = diff;
% North, South, East and West differences
deltaN = diffl(1:rows,2:cols+1) - diff;
deltaS = diffl(3:rows+2,2:cols+1) - diff;
deltaE = diffl(2:rows+1,3:cols+2) - diff;
deltaW = diffl(2:rows+1,1:cols) - diff;
% Conduction
if option == 1
cN = exp(-(deltaN/kappa).^2);
cS = exp(-(deltaS/kappa).^2);
cE = exp(-(deltaE/kappa).^2);
cW = exp(-(deltaW/kappa).^2);
elseif option == 2
cN = 1./(1 + (deltaN/kappa).^2);
cS = 1./(1 + (deltaS/kappa).^2);
cE = 1./(1 + (deltaE/kappa).^2);
cW = 1./(1 + (deltaW/kappa).^2);
end
diff = diff + lambda*(cN.*deltaN + cS.*deltaS + cE.*deltaE + cW.*deltaW);
% Uncomment the following to see a progression of images
% subplot(ceil(sqrt(niterations)),ceil(sqrt(niterations)), i)
% imagesc(diff), colormap(gray), axis image
end
%fprintf('\n');