-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathODYM_RECC_Evaluate_GHG_Overview.py
177 lines (156 loc) · 11.6 KB
/
ODYM_RECC_Evaluate_GHG_Overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 3 11:18:10 2020
@author: spauliuk
"""
"""
File ODYM_RECC_GHG_Overview_V2_4.py
Script that runs the sensitivity and scnenario comparison scripts for different settings.
"""
# Import required libraries:
import os
import numpy as np
import matplotlib.pyplot as plt
import pylab
import RECC_Paths # Import path file
# plot GHG overview figure global
def main(RegionalScope,SectorString,CumEms2050,CumEms2060,TimeSeries_R,PlotExpResolution,NE,LWE_Labels,Current_UUID):
RECC_Paths.results_path_save = os.path.join(RECC_Paths.results_path_eval,'RECC_Results_' + Current_UUID)
# Color def:
BaseBlue = np.array([0.208,0.592,0.561,1]) # Base for GHG after full ME reduction
#BaseRed = np.array([0.48,0.33,0.22,1])
ColOrder = [11,4,0,18,8,16,2,6,15] # for all sector selection other than pav and reb.
LabelColors = ['k','k','k','k','k','k','k',BaseBlue]
if SectorString == 'pav':
ColOrder = [11,0,18,8,16,2,6,15]
LabelColors = ['k','k','k','k','k','k',BaseBlue]
if SectorString == 'reb':
ColOrder = [11,4,8,16,2,6,15]
LabelColors = ['k','k','k','k','k',BaseBlue]
TSList = ['2050','2060']
for TS in range(0,2): # TS: temporal scope: 0: 2050, 1: 2060
Xoff = [1,1.7,2.7,3.4,4.4,5.1]
#MyColorCycle = pylab.cm.tab20(np.arange(0,1,0.05)) # select 20 colors from the 'tab20' color map.
MyColorCycle = np.zeros((20,4))
# Define Colors:
MyColorCycle[6,:] = np.array([0.84313725, 0.188235294,0.152941176,1]) # See https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=7
MyColorCycle[2,:] = np.array([0.988235294,0.552941176,0.349019608,1])
MyColorCycle[16,:] = np.array([0.996078431,0.878431373,0.564705882,1])
MyColorCycle[8,:] = np.array([1, 1, 0.749019608,1])
MyColorCycle[18,:] = np.array([0.878431373,0.952941176,0.97254902,1])
MyColorCycle[0,:] = np.array([0.568627451,0.749019608,0.858823529,1])
MyColorCycle[4,:] = np.array([0.270588235,0.458823529,0.705882353,1])
MyColorCycle[11,:] = np.array([0.8,0.8,0.8,1]) # grey
if TS == 0:
Data_Cum_Abs = CumEms2050
Data_Cum_pc = Data_Cum_Abs / np.einsum('SR,E->SRE',Data_Cum_Abs[:,:,0],np.ones(NE)) # here: pc = percent, not per capita.
Data_50_Abs = np.einsum('ESR->SRE',TimeSeries_R[0,:,34,:,:]) # starts at 0 for 2016
Data_50_pc = Data_50_Abs / np.einsum('SR,E->SRE',Data_50_Abs[:,:,0],np.ones(NE)) # here: pc = percent, not per capita.
if TS == 1:
Data_Cum_Abs = CumEms2060
Data_Cum_pc = Data_Cum_Abs / np.einsum('SR,E->SRE',Data_Cum_Abs[:,:,0],np.ones(NE)) # here: pc = percent, not per capita.
Data_50_Abs = np.einsum('ESR->SRE',TimeSeries_R[0,:,34,:,:]) # starts at 0 for 2016
Data_50_pc = Data_50_Abs / np.einsum('SR,E->SRE',Data_50_Abs[:,:,0],np.ones(NE)) # here: pc = percent, not per capita.
Cum_savings = Data_Cum_Abs[:,:,0] - Data_Cum_Abs[:,:,-1]
Ann_savings = Data_50_Abs[:,:,0] - Data_50_Abs[:,:,-1]
LWE = LWE_Labels
XTicks = [1.25,1.95,2.95,3.65,4.65,5.35]
YTicks = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2]
YTickLabels = ['0','10','20','30','40','50','60','70','80','90','100','0','10','20','30','40','50','60','70','80','90','100']
# plot results
bw = 0.5
yoff = 1.2
fig = plt.figure(figsize=(8,5))
ax1 = plt.axes([0.08,0.08,0.85,0.9])
ProxyHandlesList = [] # For legend
# plot bars
for mS in range(0,3):
for mR in range(0,2):
ax1.fill_between([Xoff[mS*2+mR],Xoff[mS*2+mR]+bw], [yoff,yoff],[yoff+Data_Cum_pc[mS,mR,-1],yoff+Data_Cum_pc[mS,mR,-1]],linestyle = '--', facecolor =MyColorCycle[ColOrder[0],:], linewidth = 0.0)
for xca in range(1,NE):
ax1.fill_between([Xoff[mS*2+mR],Xoff[mS*2+mR]+bw], [yoff+Data_Cum_pc[mS,mR,-xca],yoff+Data_Cum_pc[mS,mR,-xca]],[yoff+Data_Cum_pc[mS,mR,-xca-1],yoff+Data_Cum_pc[mS,mR,-xca-1]],linestyle = '--', facecolor =MyColorCycle[ColOrder[xca],:], linewidth = 0.0)
ax1.fill_between([Xoff[mS*2+mR],Xoff[mS*2+mR]+bw], [0,0],[Data_50_pc[mS,mR,-1],Data_50_pc[mS,mR,-1]],linestyle = '--', facecolor =MyColorCycle[ColOrder[0],:], linewidth = 0.0)
for xca in range(1,NE):
ax1.fill_between([Xoff[mS*2+mR],Xoff[mS*2+mR]+bw], [Data_50_pc[mS,mR,-xca],Data_50_pc[mS,mR,-xca]],[Data_50_pc[mS,mR,-xca-1],Data_50_pc[mS,mR,-xca-1]],linestyle = '--', facecolor =MyColorCycle[ColOrder[xca],:], linewidth = 0.0)
plt.plot([-1,8],[1.1,1.1], linestyle = '-', linewidth = 0.5, color = 'k')
plt.plot([2.45,2.45],[-1,3],linestyle = '--', linewidth = 0.5, color = 'k')
plt.plot([4.15,4.15],[-1,3],linestyle = '--', linewidth = 0.5, color = 'k')
for fca in range(0,NE):
ProxyHandlesList.append(plt.Rectangle((0, 0), 1, 1, fc=MyColorCycle[ColOrder[fca],:])) # create proxy artist for legend
#ProxyHandlesList.append(plt.plot([], [], ' '))
# plot emissions reductions
for mS in range(0,3):
for mR in range(0,2): # 1) Cum. GHG savings, Gt, top; 2) Ann. GHG savings, Mt, bottom; 3) Residual Cum. GHG, Gt, top; 4) Residual Ann. GHG, Mt, bottom;
plt.text(Xoff[mS*2+mR]+0.51, 2.19, ("%3.0f" % (Cum_savings[mS,mR]/1000)) + ' Gt',fontsize=14, rotation=90, fontweight='bold')
plt.text(Xoff[mS*2+mR]+0.51, 0.99, ("%3.0f" % (10*np.round(Ann_savings[mS,mR]/10))) + ' Mt',fontsize=14, rotation=90, fontweight='bold')
plt.text(Xoff[mS*2+mR]+0.2, 1.68, ("%3.0f" % (10*np.round(Data_Cum_Abs[mS,mR,-1]/10000))) + ' Gt',fontsize=16, rotation=90, fontweight='normal', color = BaseBlue)
if mS*2+mR == 1: # fine tune for paper plot, LED/2°C and SSP2/NoPol are adjusted separately
plt.text(Xoff[mS*2+mR]+0.18, 0.17+0.05, ("%3.0f" % (100*np.round(Data_50_Abs[mS,mR,-1]/100))) ,fontsize=15, rotation=90, fontweight='normal', color = BaseBlue)
plt.text(Xoff[mS*2+mR]+0.32, 0.17-0.01, 'Mt' ,fontsize=15, rotation=90, fontweight='normal', color = BaseBlue)
elif mS*2+mR == 4:
plt.text(Xoff[mS*2+mR]+0.2, 0.52+0.02, ("%3.0f" % (100*np.round(Data_50_Abs[mS,mR,-1]/100))) + ' Mt',fontsize=15, rotation=90, fontweight='normal', color = BaseBlue)
else:
plt.text(Xoff[mS*2+mR]+0.2, 0.45+0.02, ("%3.0f" % (100*np.round(Data_50_Abs[mS,mR,-1]/100))) + ' Mt',fontsize=15, rotation=90, fontweight='normal', color = BaseBlue)
# Scenarios
plt.text(1.4, -0.15, 'LED', fontsize=17, fontweight='bold', color = 'k')
plt.text(3.05, -0.15, 'SSP1',fontsize=17, fontweight='bold', color = 'k')
plt.text(4.75, -0.15, 'SSP2',fontsize=17, fontweight='bold', color = 'k')
# top arrow, black
plt.arrow(Xoff[mS*2+mR]+0.46,2.25,0,-0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = 'k', fc = 'k')
plt.arrow(Xoff[mS*2+mR]+0.46,1.05,0,-0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = 'k', fc = 'k')
# bottom arrow, black
plt.arrow(Xoff[mS*2+mR]+0.46,1.2+Data_Cum_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = 'k', fc = 'k')
plt.arrow(Xoff[mS*2+mR]+0.46,Data_50_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = 'k', fc = 'k')
# plt.arrow(Xoff[mS*2+mR]+0.25,1.2+Data_Cum_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
# length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
# plt.arrow(Xoff[mS*2+mR]+0.25,Data_50_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
# length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
# top arrow, blue
plt.arrow(Xoff[mS*2+mR]+0.25,1.2+Data_Cum_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
plt.arrow(Xoff[mS*2+mR]+0.25,Data_50_pc[mS,mR,-1]-0.05,0,0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
# bottom arrow, blue
plt.arrow(Xoff[mS*2+mR]+0.25,1.2+0.05,0,-0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
plt.arrow(Xoff[mS*2+mR]+0.25,0.05,0,-0.05, lw = 0.8, ls = '-', shape = 'full',
length_includes_head = True, head_width =0.06, head_length =0.02, ec = BaseBlue, fc = BaseBlue)
#plt.text(Xoff[mS*2+mR]+0.2, 1.9, ("%3.0f" % (Cum_savings[mS,mR]/1000)) + ' Gt',fontsize=16, rotation=90, fontweight='normal')
#plt.text(Xoff[mS*2+mR]+0.2, 0.5, ("%3.0f" % Ann_savings[mS,mR]) + ' Mt',fontsize=16, rotation=90, fontweight='normal')
# plot text and labels
plt.text(0.85, 0.97, '2050 annual emissions', fontsize=11, rotation=90, fontweight='bold')
if TS == 0:
plt.text(0.85, 2.2, '2016-50 cum. emissions',fontsize=11, rotation=90, fontweight='bold')
if TS == 1:
plt.text(0.85, 2.2, '2016-60 cum. emissions',fontsize=11, rotation=90, fontweight='bold')
#plt.title('RE strats. and GHG emissions, global, pav+reb.', fontsize = 18)
plt.ylabel('GHG emissions, system-wide, %.', fontsize = 18)
plt.xticks(XTicks)
plt.yticks(YTicks, fontsize =12)
#ax1.set_xticklabels(['LED/NoPol','LED/RCP2.6','SSP1/NoPol','SSP1/RCP2.6','SSP2/NoPol','SSP2/RCP2.6'], rotation =90, fontsize = 15, fontweight = 'normal')
ax1.set_xticklabels(['No Pol.','2°C Pol.','No Pol.','2°C Pol.','No Pol.','2°C Pol.'], rotation =0, fontsize = 14, fontweight = 'bold')
ax1.set_yticklabels(YTickLabels, rotation =0, fontsize = 15, fontweight = 'normal')
leg = plt.legend(handles = reversed(ProxyHandlesList),labels = LWE,shadow = False, prop={'size':12}, ncol=1, loc = 'upper right' , bbox_to_anchor=(1.40, 1))
# Change text color:
mc = 0
for text in leg.get_texts():
plt.setp(text, color = LabelColors[mc])
mc +=1
#plt.axis([-0.2, 7.7, 0.9*Right, 1.02*Left])
plt.axis([0.7, 5.8, -0.2, 2.3])
plt.show()
fig_name = RegionalScope + '_' + SectorString + '_GHG_Overview_rel_' + TSList[TS] + '.png'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = PlotExpResolution, bbox_inches='tight')
fig_name = RegionalScope + '_' + SectorString + '_GHG_Overview_rel_' + TSList[TS] + '.svg'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = PlotExpResolution, bbox_inches='tight')
#
#
#
#
#
#
#