diff --git a/.github/workflows/spell-check-comments.yml b/.github/workflows/spell-check-comments.yml index a36b27fbe0b..7d7704dcc51 100644 --- a/.github/workflows/spell-check-comments.yml +++ b/.github/workflows/spell-check-comments.yml @@ -20,7 +20,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - python -m pip install comment-spell-check~=0.2.2 + python -m pip install comment-spell-check~=0.3.0 curl -O https://raw.githubusercontent.com/SimpleITK/SimpleITK/master/.github/workflows/additional_dictionary.txt - name: Spell check Modules directory @@ -29,6 +29,7 @@ jobs: --miss \ --prefix "gdcm" --exclude ThirdParty \ --dict additional_dictionary.txt \ + --bibtex Documentation/Doxygen/doxygen.bib \ --dict .github/workflows/itk_dict.txt \ --suffix ".h" \ --suffix ".hxx" \ diff --git a/Documentation/Doxygen/doxygen.bib b/Documentation/Doxygen/doxygen.bib new file mode 100644 index 00000000000..9fd60461c72 --- /dev/null +++ b/Documentation/Doxygen/doxygen.bib @@ -0,0 +1,1094 @@ +@article{alyassin1994, + title = {Evaluation of new algorithms for the interactive measurement of surface area and volume}, + author = {Alyassin, Abdalmajeid M. and Lancaster, Jack L. and Downs III, J. Hunter and Fox, Peter T.}, + year = 1994, + journal = {Med Phys}, + volume = 21, + number = 6, + pages = {741--752}, + doi = {10.1118/1.597333}, + url = {https://doi.org/10.1118/1.597333} +} +@article{ashburner2007, + title = {A fast diffeomorphic image registration algorithm}, + author = {John Ashburner}, + year = 2007, + journal = {NeuroImage}, + volume = 38, + number = 1, + pages = {95--113}, + doi = {10.1016/j.neuroimage.2007.07.007}, + issn = {1053-8119}, + url = {https://doi.org/10.1016/j.neuroimage.2007.07.007} +} +@article{avants2008, + title = {Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain}, + author = {B.B. Avants and C.L. Epstein and M. Grossman and J.C. Gee}, + year = 2008, + journal = {Medical Image Analysis}, + volume = 12, + number = 1, + pages = {26--41}, + doi = {10.1016/j.media.2007.06.004}, + url = {https://doi.org/10.1016/j.media.2007.06.004} +} +@article{avants2011, + title = {A reproducible evaluation of {ANTs} similarity metric performance in brain image registration}, + author = {Brian B. Avants and Nicholas J. Tustison and Gang Song and Philip A. Cook and Arno Klein and James C. Gee}, + year = 2011, + journal = {NeuroImage}, + volume = 54, + number = 3, + pages = {2033--2044}, + doi = {10.1016/j.neuroimage.2010.09.025}, + url = {https://doi.org/10.1016/j.neuroimage.2010.09.025} +} +@inproceedings{awate2005, + title = {Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering}, + author = {Suyash P. Awate and Ross T. Whitaker}, + year = 2005, + booktitle = {IEEE Computer Society Conference on Computer Vision and Pattern Recognition {(CVPR)}}, + volume = 2, + pages = {44--51}, + doi = {10.1109/CVPR.2005.176}, + url = {https://doi.org/10.1109/CVPR.2005.176} +} +@article{awate2006, + title = {Unsupervised, information-theoretic, adaptive image filtering for image restoration}, + author = {Suyash P. Awate and Ross T. Whitaker}, + year = 2006, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 28, + number = 3, + pages = {364--376}, + doi = {10.1109/TPAMI.2006.64}, + url = {https://doi.org/10.1109/TPAMI.2006.64} +} +@book{bertero1998, + title = {Introduction to Inverse Problems in Imaging}, + author = {Mario Bertero and Patrizia Boccacci}, + year = 1998, + publisher = {CRC Press} +} +@article{besl1992, + title = {A method for registration of {3-D} shapes}, + author = {Besl, P.J. and McKay, Neil D.}, + year = 1992, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 14, + number = 2, + pages = {239--256}, + doi = {10.1109/34.121791}, + url = {https://doi.org/10.1109/34.121791} +} +@inproceedings{bierling1988, + title = {{Displacement Estimation By Hierarchical Blockmatching}}, + author = {M. Bierling}, + year = 1988, + booktitle = {Visual Communications and Image Processing}, + publisher = {SPIE}, + volume = 1001, + pages = {942 -- 953}, + doi = {10.1117/12.969046}, + url = {https://doi.org/10.1117/12.969046} +} +@article{bowdler1968, + title = {The {QR} and {QL} algorithms for symmetric matrices}, + author = {Bowdler, Hilary and Martin, R. S. and Reinsch, C. and Wilkinson, J. H.}, + year = 1968, + journal = {Numerische Mathematik}, + volume = 11, + number = 4, + pages = {293--306}, + doi = {10.1007/BF02166681}, + url = {https://doi.org/10.1007/BF02166681} +} +@inbook{bowdler1971, + title = {The {QR} and {QL} Algorithms for Symmetric Matrices}, + author = {Bowdler, H. and Martin, R. S. and Reinsch, C. and Wilkinson, J. H.}, + year = 1971, + booktitle = {Handbook for Automatic Computation: Volume II: Linear Algebra}, + publisher = {Springer Berlin Heidelberg}, + address = {Berlin, Heidelberg}, + pages = {227--240}, + doi = {10.1007/978-3-642-86940-2_14}, + url = {https://doi.org/10.1007/978-3-642-86940-2_14} +} +@article{brigger1999, + title = {Centered pyramids}, + author = {Brigger, P. and Muller, F. and Illgner, K. and Unser, M.}, + year = 1999, + journal = {IEEE Transactions on Image Processing}, + volume = 8, + number = 9, + pages = {1254--1264}, + doi = {10.1109/83.784437}, + url = {https://doi.org/10.1109/83.784437} +} +@inproceedings{buades2005, + title = {A non-local algorithm for image denoising}, + author = {Antoni Buades and Bartomeu Coll and Jean-Michel Morel}, + year = 2005, + booktitle = {IEEE Computer Society Conference on Computer Vision and Pattern Recognition {(CVPR)}}, + volume = 2, + pages = {60--65}, + doi = {10.1109/CVPR.2005.38}, + url = {https://doi.org/10.1109/CVPR.2005.38} +} +@article{buades2008, + title = {Nonlocal Image and Movie Denoising}, + author = {Buades, Antoni and Coll, Bartomeu and Morel, Jean-Michel}, + year = 2008, + journal = {International Journal of Computer Vision}, + volume = 76, + number = 2, + pages = {123--139}, + doi = {10.1007/s11263-007-0052-1}, + url = {https://doi.org/10.1007/s11263-007-0052-1} +} +@article{canny1986, + title = {A Computational Approach to Edge Detection}, + author = {John Canny}, + year = 1986, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 8, + number = 6, + pages = {679–698}, + doi = {10.1109/TPAMI.1986.4767851}, + url = {https://doi.org/10.1109/TPAMI.1986.4767851} +} +@book{castleman1995, + title = {Digital Signal Processing}, + author = {Kenneth R. Castleman}, + year = 1995, + publisher = {Prentice Hall} +} +@inproceedings{chung2002, + title = {Multi-modal Image Registration by Minimising Kullback-Leibler Distance}, + author = {Chung, Albert C. S. and Wells, William M. and Norbash, Alexander and Grimson, W. Eric L.}, + year = 2002, + booktitle = {Medical Image Computing and Computer-Assisted Intervention {(MICCAI)}}, + pages = {525--532}, + doi = {10.1007/3-540-45787-9_66}, + url = {https://doi.org/10.1007/3-540-45787-9_66} +} +@article{danielsson1980, + title = {Euclidean distance mapping}, + author = {Per-Erik Danielsson}, + year = 1980, + journal = {Computer Graphics and Image Processing}, + volume = 14, + number = 3, + pages = {227--248}, + doi = {10.1016/0146-664X(80)90054-4}, + url = {https://doi.org/10.1016/0146-664X(80)90054-4} +} +@article{davis1997, + title = {A physics-based coordinate transformation for {3-D} image matching}, + author = {Davis, M.H. and Khotanzad, A. and Flamig, D.P. and Harms, S.E.}, + year = 1997, + journal = {IEEE Transactions on Medical Imaging}, + volume = 16, + number = 3, + pages = {317--328}, + doi = {10.1109/42.585766}, + url = {https://doi.org/10.1109/42.585766} +} +@article{deriche1990, + title = {Fast algorithms for low-level vision}, + author = {Rachid Deriche}, + year = 1990, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 12, + number = 1, + pages = {78--87}, + doi = {10.1109/34.41386}, + url = {https://doi.org/10.1109/34.41386} +} +@article{farneback2006, + title = {Improving Deriche-style Recursive Gaussian Filters}, + author = {Farneb{\"a}ck, Gunnar and Westin, Carl-Fredrik}, + year = 2006, + journal = {Journal of Mathematical Imaging and Vision}, + volume = 26, + number = 3, + pages = {293--299}, + doi = {10.1007/s10851-006-8464-z}, + url = {https://doi.org/10.1007/s10851-006-8464-z} +} +@article{fischer2004, + title = {A unified approach to fast image registration and a new curvature based registration technique}, + author = {Bernd Fischer and Jan Modersitzki}, + year = 2004, + journal = {Linear Algebra and its Applications}, + volume = 380, + pages = {107--124}, + doi = {10.1016/j.laa.2003.10.021}, + url = {https://doi.org/10.1016/j.laa.2003.10.021} +} +@inproceedings{frangi1998, + title = {Multiscale vessel enhancement filtering}, + author = {Frangi, Alejandro F. and Niessen, Wiro J. and Vincken, Koen L. and Viergever, Max A.}, + year = 1998, + booktitle = {Medical Image Computing and Computer-Assisted Intervention (MICCAI)}, + pages = {130--137}, + doi = {10.1007/BFb0056195}, + url = {https://doi.org/10.1007/BFb0056195} +} +@book{gamma1994, + title = {Design Patterns: Elements of Reusable Object-Oriented Software}, + author = {Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides}, + year = 1994, + publisher = {Addison-Wesley} +} +@article{glasbey1993, + title = {An Analysis of Histogram-Based Thresholding Algorithms}, + author = {C.A. Glasbey}, + year = 1993, + journal = {CVGIP: Graphical Models and Image Processing}, + volume = 55, + number = 6, + pages = {532--537}, + doi = {10.1006/cgip.1993.1040}, + url = {https://doi.org/10.1006/cgip.1993.1040} +} +@book{gonzales1993, + title = {Digital Image Processing}, + author = {Rafael C. Gonzales and Richard E. Woods}, + year = 1993, + publisher = {Addison Wesley} +} +@article{gouraud1971, + title = {Continuous Shading of Curved Surfaces}, + author = {Gouraud, Henri}, + year = 1971, + journal = {IEEE Transactions on Computers}, + volume = {C-20}, + number = 6, + pages = {623--629}, + doi = {10.1109/T-C.1971.223313}, + url = {https://doi.org/10.1109/T-C.1971.223313} +} +@article{guibas1985, + title = {Primitives for the manipulation of general subdivisions and the computation of Voronoi}, + author = {Guibas, Leonidas and Stolfi, Jorge}, + year = 1985, + journal = {ACM Transactions on Graphics}, + volume = 4, + number = 2, + pages = {74–123}, + doi = {10.1145/282918.282923}, + url = {https://doi.org/10.1145/282918.282923} +} +@techreport{hamilton2006, + title = {Compact Hilbert Indices}, + author = {Chris Hamilton}, + year = 2006, + number = {CS-2006-07}, + institution = {Dalhousie University} +} +@article{hasan2001, + title = {Analytical Computation of the Eigenvalues and Eigenvectors in {DT-MRI}}, + author = {Khader M. Hasan and Peter J. Basser and Dennis L. Parker and Andrew L. Alexander}, + year = 2001, + journal = {Journal of Magnetic Resonance}, + volume = 152, + number = 1, + pages = {41--47}, + doi = {10.1006/jmre.2001.2400}, + url = {https://doi.org/10.1006/jmre.2001.2400} +} +@article{hipwell2003, + title = {Intensity-based {2-D - 3-D} registration of cerebral angiograms}, + author = {Hipwell, J.H. and Penney, G.P. and McLaughlin, R.A. and Rhode, K. and Summers, P. and Cox, T.C. and Byrne, J.V. and Noble, J.A. and Hawkes, D.J.}, + year = 2003, + journal = {IEEE Transactions on Medical Imaging}, + volume = 22, + number = 11, + pages = {1417--1426}, + doi = {10.1109/TMI.2003.819283}, + url = {https://doi.org/10.1109/TMI.2003.819283} +} +@article{horn1987, + title = {Closed-form solution of absolute orientation using unit quaternions}, + author = {Berthold K. P. Horn}, + year = 1987, + journal = {Journal of the Optical Society of America A}, + publisher = {Optica Publishing Group}, + volume = 4, + number = 4, + pages = {629--642}, + doi = {10.1364/JOSAA.4.000629}, + url = {https://doi.org/10.1364/JOSAA.4.000629} +} +@article{huang1979, + title = {A fast two-dimensional median filtering algorithm}, + author = {Huang, T. and Yang, G. and Tang, G.}, + year = 1979, + journal = {IEEE Transactions on Acoustics, Speech, and Signal Processing}, + volume = 27, + number = 1, + pages = {13--18}, + doi = {10.1109/TASSP.1979.1163188}, + url = {https://doi.org/10.1109/TASSP.1979.1163188} +} +@article{huang1995, + title = {Image thresholding by minimizing the measures of fuzziness}, + author = {Liang-Kai Huang and Mao-Jiun J. Wang}, + year = 1995, + journal = {Pattern Recognition}, + volume = 28, + number = 1, + pages = {41--51}, + doi = {10.1016/0031-3203(94)E0043-K}, + url = {https://doi.org/10.1016/0031-3203(94)E0043-K} +} +@article{jin2005, + title = {A comparison of algorithms for vertex normal computation}, + author = {Jin, Shuangshuang and Lewis, Robert R. and West, David}, + year = 2005, + journal = {The Visual Computer}, + volume = 21, + number = 1, + pages = {71--82}, + doi = {10.1007/s00371-004-0271-1}, + url = {https://doi.org/10.1007/s00371-004-0271-1} +} +@article{kapur1985, + title = {A new method for gray-level picture thresholding using the entropy of the histogram}, + author = {J.N. Kapur and P.K. Sahoo and A.K.C. Wong}, + year = 1985, + journal = {Computer Vision, Graphics, and Image Processing}, + volume = 29, + number = 3, + pages = {273--285}, + doi = {10.1016/0734-189X(85)90125-2}, + url = {https://doi.org/10.1016/0734-189X(85)90125-2} +} +@article{kim2011, + title = {Affine Transformation for Landmark Based Registration Initializer in ITK}, + author = {Eun Young Kim and Hans Johnson and Norman Williams}, + year = 2011, + journal = {The MIDAS Journal}, + doi = {10.54294/fge470}, + url = {https://doi.org/10.54294/fge470} +} +@article{kimmel1998, + title = {Computing geodesic paths on manifolds}, + author = {R. Kimmel and J. A. Sethian}, + year = 1998, + journal = {Proceedings of the National Academy of Sciences}, + volume = 95, + number = 15, + pages = {8431--8435}, + doi = {10.1073/pnas.95.15.8431}, + url = {https://doi.org/10.1073/pnas.95.15.8431} +} +@article{kittler1986, + title = {Minimum error thresholding}, + author = {J. Kittler and J. Illingworth}, + year = 1986, + journal = {Pattern Recognition}, + volume = 19, + number = 1, + pages = {41--47}, + doi = {10.1016/0031-3203(86)90030-0}, + url = {https://doi.org/10.1016/0031-3203(86)90030-0} +} +@article{klein1997, + title = {Quantitative coronary angiography with deformable spline models}, + author = {Andreas Klein and Forester Lee and Amir A. Amini}, + year = 1997, + journal = {IEEE Transactions on Medical Imaging}, + volume = 16, + number = 5, + pages = {468--482}, + doi = {10.1109/42.640737}, + url = {https://doi.org/10.1109/42.640737} +} +@article{lee1997, + title = {Scattered data interpolation with multilevel B-splines}, + author = {Lee, S. and Wolberg, G. and Shin, S.Y.}, + year = 1997, + journal = {IEEE Transactions on Visualization and Computer Graphics}, + volume = 3, + number = 3, + pages = {228--244}, + doi = {10.1109/2945.620490}, + url = {https://doi.org/10.1109/2945.620490} +} +@article{li1993, + title = {Minimum cross entropy thresholding}, + author = {C.H. Li and C.K. Lee}, + year = 1993, + journal = {Pattern Recognition}, + volume = 26, + number = 4, + pages = {617--625}, + doi = {10.1016/0031-3203(93)90115-D}, + url = {https://doi.org/10.1016/0031-3203(93)90115-D} +} +@article{li1998, + title = {An iterative algorithm for minimum cross entropy thresholding}, + author = {C.H. Li and P.K.S. Tam}, + year = 1998, + journal = {Pattern Recognition Letters}, + volume = 19, + number = 8, + pages = {771--776}, + doi = {10.1016/S0167-8655(98)00057-9}, + url = {https://doi.org/10.1016/S0167-8655(98)00057-9} +} +@phdthesis{lindeberg1991, + title = {Discrete Scale-Space Theory and the Scale-Space Primal Sketch}, + author = {Tony Lindeberg}, + year = 1991, + school = {Royal Institute of Technology, Stockholm, Sweden} +} +@article{lorensen1987, + title = {Marching cubes: {A} high resolution {3D} surface construction algorithm}, + author = {William E. Lorensen and Harvey E. Cline}, + year = 1987, + journal = {Computer Graphics}, + volume = 21, + number = 4, + pages = {163--169}, + doi = {10.1145/37402.37422}, + url = {https://doi.org/10.1145/37402.37422} +} +@article{martin1968, + title = {Householder's tridiagonalization of a symmetric matrix}, + author = {Martin, R. S. and Reinsch, C. and Wilkinson, J. H.}, + year = 1968, + journal = {Numerische Mathematik}, + volume = 11, + number = 3, + pages = {181--195}, + doi = {10.1007/BF02161841}, + url = {https://doi.org/10.1007/BF02161841} +} +@inbook{martin1971, + title = {Householder's Tridiagonalization of a Symmetric Matrix}, + author = {Martin, R. S. and Reinsch, C. and Wilkinson, J. H.}, + year = 1971, + booktitle = {Handbook for Automatic Computation: Volume II: Linear Algebra}, + publisher = {Springer Berlin Heidelberg}, + address = {Berlin, Heidelberg}, + pages = {212--226}, + doi = {10.1007/978-3-642-86940-2_13}, + url = {https://doi.org/10.1007/978-3-642-86940-2_13} +} +@article{matsumoto1998, + title = {Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator}, + author = {Matsumoto, Makoto and Nishimura, Takuji}, + year = 1998, + journal = {ACM Transactions on Modeling and Computer Simulation}, + volume = 8, + number = 1, + pages = {3–30}, + doi = {10.1145/272991.272995}, + url = {https://doi.org/10.1145/272991.272995} +} +@inproceedings{mattes2001, + title = {{Nonrigid multimodality image registration}}, + author = {David Mattes and David R. Haynor and Hubert Vesselle and Thomas K. Lewellyn and William Eubank}, + year = 2001, + booktitle = {Medical Imaging 2001: Image Processing}, + publisher = {SPIE}, + volume = 4322, + pages = {1609 -- 1620}, + doi = {10.1117/12.431046}, + url = {https://doi.org/10.1117/12.431046}, + editor = {Milan Sonka and Kenneth M. Hanson}, + organization = {International Society for Optics and Photonics} +} +@article{mattes2003, + title = {PET-CT image registration in the chest using free-form deformations}, + author = {Mattes, D. and Haynor, D.R. and Vesselle, H. and Lewellen, T.K. and Eubank, W.}, + year = 2003, + journal = {IEEE Transactions on Medical Imaging}, + volume = 22, + number = 1, + pages = {120--128}, + doi = {10.1109/TMI.2003.809072}, + url = {https://doi.org/10.1109/TMI.2003.809072} +} +@article{maurer2003, + title = {A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions}, + author = {Maurer, C.R. and Rensheng Qi and Raghavan, V.}, + year = 2003, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 25, + number = 2, + pages = {265--270}, + doi = {10.1109/TPAMI.2003.1177156}, + url = {https://doi.org/10.1109/TPAMI.2003.1177156} +} +@inproceedings{meijering1999, + title = {Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation}, + author = {Meijering, Erik H. W. and Niessen, Wiro J. and Pluim, Josien P. W. and Viergever, Max A.}, + year = 1999, + booktitle = {Medical Image Computing and Computer-Assisted Intervention {(MICCAI)}}, + pages = {210--217}, + doi = {10.1007/10704282_23}, + url = {https://doi.org/10.1007/10704282_23} +} +@article{melhem2002, + title = {Diffusion Tensor {MR} Imaging of the Brain and White Matter Tractography}, + author = {Melhem, Elias R. and Mori, Susumu and Mukundan, Govind and Kraut, Michael A. and Pomper, Martin G. and van Zijl, Peter C. M.}, + year = 2002, + journal = {American Journal of Roentgenology}, + volume = 178, + number = 1, + pages = {3--16}, + doi = {10.2214/ajr.178.1.1780003}, + url = {https://doi.org/10.2214/ajr.178.1.1780003} +} +@article{ng2006, + title = {Automatic thresholding for defect detection}, + author = {Hui-Fuang Ng}, + year = 2006, + journal = {Pattern Recognition Letters}, + volume = 27, + number = 14, + pages = {1644--1649}, + doi = {10.1016/j.patrec.2006.03.009}, + issn = {0167-8655}, + url = {https://doi.org/10.1016/j.patrec.2006.03.009} +} +@inproceedings{nikopoulos1997, + title = {An Efficient Algorithm for {3D} Binary Morphological Transformations with {3D} Structuring Elements of Arbitrary Size and Shape}, + author = {Nikos Nikopoulos and Ioannis Pitas}, + year = 1997, + booktitle = {IEEE Workshop on Nonlinear Signal and Image Processing} +} +@article{nyul2000, + title = {New variants of a method of {MRI} scale standardization}, + author = {Nyul, L.G. and Udupa, J.K. and Xuan Zhang}, + year = 2000, + journal = {IEEE Transactions on Medical Imaging}, + volume = 19, + number = 2, + pages = {143--150}, + doi = {10.1109/42.836373}, + url = {https://doi.org/10.1109/42.836373} +} +@inproceedings{padfield2010, + title = {Masked {FFT} registration}, + author = {Padfield, Dirk}, + year = 2010, + booktitle = {IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)}, + pages = {2918--2925}, + doi = {10.1109/CVPR.2010.5540032}, + url = {https://doi.org/10.1109/CVPR.2010.5540032} +} +@article{padfield2012, + title = {Masked Object Registration in the Fourier Domain}, + author = {Padfield, Dirk}, + year = 2012, + journal = {IEEE Transactions on Image Processing}, + volume = 21, + number = 5, + pages = {2706--2718}, + doi = {10.1109/TIP.2011.2181402}, + url = {https://doi.org/10.1109/TIP.2011.2181402} +} +@article{perona1990, + title = {Scale-space and edge detection using anisotropic diffusion}, + author = {Pietro Perona and Jitendra Malik}, + year = 1990, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + volume = 12, + number = 7, + pages = {629--639}, + doi = {10.1109/34.56205}, + url = {https://doi.org/10.1109/34.56205} +} +@book{piegl1997, + title = {The NURBS Book}, + author = {Les Piegl and Wayne Tiller}, + year = 1997, + publisher = {Springer Berlin}, + doi = {10.1007/978-3-642-59223-2}, + url = {https://doi.org/10.1007/978-3-642-59223-2} +} +@article{pluta2009, + title = {Appearance and incomplete label matching for diffeomorphic template based hippocampus segmentation}, + author = {John Pluta and Brian B. Avants and Simon Glynn and Suyash Awate and James C. Gee and John A. Detre}, + year = 2009, + journal = {Hippocampus}, + volume = 19, + number = 6, + pages = {565--571}, + doi = {10.1002/hipo.20619}, + url = {https://doi.org/10.1002/hipo.20619} +} +@article{prewitt1966, + title = {The analysis of cell images}, + author = {Prewitt, Judith M. S. and Mendelsohn, Mortimer L.}, + year = 1966, + journal = {Annals of the New York Academy of Sciences}, + volume = 128, + number = 3, + pages = {1035--1053}, + doi = {10.1111/j.1749-6632.1965.tb11715.x}, + url = {https://doi.org/10.1111/j.1749-6632.1965.tb11715.x} +} +@article{ridler1978, + title = {Picture Thresholding Using an Iterative Selection Method}, + author = {T.W. Ridler, S. Calvard, Picture}, + year = 1978, + journal = {IEEE Transactions on Systems, Man, and Cybernetics}, + volume = 8, + number = 8, + pages = {630--632}, + doi = {10.1109/TSMC.1978.4310039}, + url = {https://doi.org/10.1109/TSMC.1978.4310039} +} +@article{robinson2004, + title = {Efficient morphological reconstruction: a downhill filter}, + author = {Kevin Robinson and Paul F. Whelan}, + year = 2004, + journal = {Pattern Recognition Letters}, + volume = 25, + number = 15, + pages = {1759--1767}, + doi = {10.1016/j.patrec.2004.07.002}, + url = {https://doi.org/10.1016/j.patrec.2004.07.002} +} +@article{sapiro1996, + title = {Anisotropic diffusion of multivalued images with applications to color filtering}, + author = {Sapiro, G. and Ringach, D.L.}, + year = 1996, + journal = {IEEE Transactions on Image Processing}, + volume = 5, + number = 11, + pages = {1582--1586}, + doi = {10.1109/83.541429}, + url = {https://doi.org/10.1109/83.541429} +} +@inbook{sethian1999, + title = {Image Enhancement and Noise Removal}, + author = {J. A. Sethian}, + year = 1999, + booktitle = {Level Set Methods and Fast Marching Methods}, + publisher = {Cambridge Press}, + pages = {200--213} +} +@inbook{sethian1999a, + title = {Efficient Schemes: Fast Marching Methods}, + author = {J. A. Sethian}, + year = 1999, + booktitle = {Level Set Methods and Fast Marching Methods}, + publisher = {Cambridge Press}, + pages = {86--101} +} +@inbook{sethian1999b, + title = {Constructing Extension Velocities}, + author = {J. A. Sethian}, + year = 1999, + booktitle = {Level Set Methods and Fast Marching Methods}, + publisher = {Cambridge Press}, + pages = {127--141} +} +@article{sezgin2004, + title = {{Survey over image thresholding techniques and quantitative performance evaluation}}, + author = {Mehmet Sezgin and B{\"u}lent Sankur}, + year = 2004, + journal = {Journal of Electronic Imaging}, + volume = 13, + number = 1, + pages = {146 -- 165}, + doi = {10.1117/1.1631315}, + url = {https://doi.org/10.1117/1.1631315} +} +@article{shanbhag1994, + title = {Utilization of Information Measure as a Means of Image Thresholding}, + author = {A.G. Shanbhag}, + year = 1994, + journal = {CVGIP: Graphical Models and Image Processing}, + volume = 56, + number = 5, + pages = {414--419}, + doi = {10.1006/cgip.1994.1037}, + issn = {1049-9652}, + url = {https://doi.org/10.1006/cgip.1994.1037} +} +@book{silverman1986, + title = {Density Estimation for Statistics and Data Analysis}, + author = {B. W. Silverman}, + year = 1986, + publisher = {Chapman and Hall} +} +@article{sled1998, + title = {A nonparametric method for automatic correction of intensity nonuniformity in MRI data}, + author = {Sled, J.G. and Zijdenbos, A.P. and Evans, A.C.}, + year = 1998, + journal = {IEEE Transactions on Medical Imaging}, + volume = 17, + number = 1, + pages = {87--97}, + doi = {10.1109/42.668698}, + url = {https://doi.org/10.1109/42.668698} +} +@techreport{sobel1995, + title = {An Isotropic 3x3x3 Volume Gradient Operator}, + author = {Irwin Sobel}, + year = 1995, + institution = {Hewlett-Packard Laboratories} +} +@inbook{soille2004, + title = {Geodesic Transformations}, + author = {Soille, Pierre}, + year = 2004, + booktitle = {Morphological Image Analysis: Principles and Applications}, + publisher = {Springer Berlin Heidelberg}, + address = {Berlin, Heidelberg}, + pages = {183--218}, + doi = {10.1007/978-3-662-05088-0_6}, + url = {https://doi.org/10.1007/978-3-662-05088-0_6} +} +@inbook{soille2004a, + title = {Erosion and Dilation}, + author = {Soille, Pierre}, + year = 2004, + booktitle = {Morphological Image Analysis: Principles and Applications}, + publisher = {Springer Berlin Heidelberg}, + address = {Berlin, Heidelberg}, + pages = {63--103}, + doi = {10.1007/978-3-662-05088-0_3}, + url = {https://doi.org/10.1007/978-3-662-05088-0_3} +} +@inbook{soille2004b, + title = {Opening and Closing}, + author = {Soille, Pierre}, + year = 2004, + booktitle = {Morphological Image Analysis: Principles and Applications}, + publisher = {Springer Berlin Heidelberg}, + address = {Berlin, Heidelberg}, + pages = {105--137}, + doi = {10.1007/978-3-662-05088-0_4}, + url = {https://doi.org/10.1007/978-3-662-05088-0_4} +} +@inproceedings{sprengel1996, + title = {Thin-plate spline approximation for image registration}, + author = {Sprengel, R. and Rohr, K. and Stiehl, H.S.}, + year = 1996, + booktitle = {Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society}, + volume = 3, + pages = {1190--1191}, + doi = {10.1109/IEMBS.1996.652767}, + url = {https://doi.org/10.1109/IEMBS.1996.652767} +} +@article{stark2000, + title = {Adaptive image contrast enhancement using generalizations of histogram equalization}, + author = {Stark, J. Alex}, + year = 2000, + journal = {IEEE Transactions on Image Processing}, + volume = 9, + number = 5, + pages = {889--896}, + doi = {10.1109/83.841534}, + url = {https://doi.org/10.1109/83.841534} +} +@book{stroustrup1997, + title = {The C++ Programming Language}, + author = {Bjarne Stroustrup}, + year = 1997, + publisher = {Addison Wesley} +} +@techreport{styner1997, + title = {Evaluation of 2D/3D bias correction with {1+1ES-optimization}}, + author = {Martin Styner and Guido Gerig}, + year = 1997, + number = {TR-197}, + institution = {ETH Zurich} +} +@article{styner2000, + title = {Parametric estimate of intensity inhomogeneities applied to {MRI}}, + author = {Styner, M. and Brechbuhler, C. and Szckely, G. and Gerig, G.}, + year = 2000, + journal = {IEEE Transactions on Medical Imaging}, + volume = 19, + number = 3, + pages = {153--165}, + doi = {10.1109/42.845174}, + url = {https://doi.org/10.1109/42.845174} +} +@article{thevenaz2000, + title = {Optimization of mutual information for multiresolution image registration}, + author = {Thevenaz, P. and Unser, M.}, + year = 2000, + journal = {IEEE Transactions on Image Processing}, + volume = 9, + number = 12, + pages = {2083--2099}, + doi = {10.1109/83.887976}, + url = {https://doi.org/10.1109/83.887976} +} +@techreport{thirion1995, + title = {Fast Non-Rigid Matching of {3D} Medical Images}, + author = {Jean-Philippe Thirion}, + year = 1995, + number = {RR-2547}, + institution = {INRIA} +} +@article{thirion1998, + title = {Image matching as a diffusion process: an analogy with Maxwell's demons}, + author = {Jean-Philippe Thirion}, + year = 1998, + journal = {Medical Image Analysis}, + volume = 2, + number = 3, + pages = {243--260}, + doi = {10.1016/S1361-8415(98)80022-4}, + url = {https://doi.org/10.1016/S1361-8415(98)80022-4} +} +@article{thurmer1998, + title = {Computing Vertex Normals from Polygonal Facets}, + author = {Grit Th{\:u}rmer and Charles A. W{\:u}thrich}, + year = 1998, + journal = {Journal of Graphics Tools}, + volume = 3, + number = 1, + pages = {43--46}, + doi = {10.1080/10867651.1998.10487487}, + url = {https://doi.org/10.1080/10867651.1998.10487487} +} +@inproceedings{tomasi1998, + title = {Bilateral filtering for gray and color images}, + author = {Tomasi, C. and Manduchi, R.}, + year = 1998, + booktitle = {International Conference on Computer Vision (ICCV)}, + pages = {839--846}, + doi = {10.1109/ICCV.1998.710815}, + url = {https://doi.org/10.1109/ICCV.1998.710815} +} +@article{tsai1985, + title = {Moment-preserving thresolding: A new approach}, + author = {Wen-Hsiang Tsai}, + year = 1985, + journal = {Computer Vision, Graphics, and Image Processing}, + volume = 29, + number = 3, + pages = {377--393}, + doi = {10.1016/0734-189X(85)90133-1}, + issn = {0734-189X}, + url = {https://doi.org/10.1016/0734-189X(85)90133-1} +} +@inproceedings{tustison2006, + title = {Generalized {n-D} C$^k$B-Spline Scattered Data Approximation with Confidence Values}, + author = {Tustison, Nicholas J. and Gee, James C.}, + year = 2006, + booktitle = {Medical Imaging and Augmented Reality}, + pages = {76--83}, + doi = {10.1007/11812715_10}, + url = {https://doi.org/10.1007/11812715_10} +} +@article{tustison2009, + title = {Directly Manipulated Free-Form Deformation Image Registration}, + author = {Tustison, Nicholas J. and Avants, Brian B. and Gee, James C.}, + year = 2009, + journal = {IEEE Transactions on Image Processing}, + volume = 18, + number = 3, + pages = {624--635}, + doi = {10.1109/TIP.2008.2010072}, + url = {https://doi.org/10.1109/TIP.2008.2010072} +} +@article{tustison2010, + title = {{N4ITK}: Improved {N3} Bias Correction}, + author = {Tustison, Nicholas J. and Avants, Brian B. and Cook, Philip A. and Zheng, Yuanjie and Egan, Alexander and Yushkevich, Paul A. and Gee, James C.}, + year = 2010, + journal = {IEEE Transactions on Medical Imaging}, + volume = 29, + number = 6, + pages = {1310--1320}, + doi = {10.1109/TMI.2010.2046908}, + url = {https://doi.org/10.1109/TMI.2010.2046908} +} +@article{tustison2010a, + title = {Information-Theoretic Directly Manipulated Free-Form Deformation Labeled Point-Set Registration}, + author = {N. Tustison and S. Awate and J. Gee}, + year = 2010, + journal = {The Insight Journal}, + doi = {10.54294/791z7t}, + url = {https://doi.org/10.54294/791z7t} +} +@article{tustison2011, + title = {Point Set Registration Using Havrda–Charvat–Tsallis Entropy Measures}, + author = {Tustison, Nicholas J. and Awate, Suyash P. and Song, Gang and Cook, Tessa S. and Gee, James C.}, + year = 2011, + journal = {IEEE Transactions on Medical Imaging}, + volume = 30, + number = 2, + pages = {451--460}, + doi = {10.1109/TMI.2010.2086065}, + url = {https://doi.org/10.1109/TMI.2010.2086065} +} +@article{tustison2011a, + title = {Topological Well-Composedness and Glamorous Glue: A Digital Gluing Algorithm for Topologically Constrained Front Propagation}, + author = {Tustison, Nicholas J. and Avants, Brian B. and Siqueira, Marcelo and Gee, James C.}, + year = 2011, + journal = {IEEE Transactions on Image Processing}, + volume = 20, + number = 6, + pages = {1756--1761}, + doi = {10.1109/TIP.2010.2095021}, + url = {https://doi.org/10.1109/TIP.2010.2095021} +} +@article{unser1993, + title = {B-spline signal processing. {I. Theory}}, + author = {Unser, M. and Aldroubi, A. and Eden, M.}, + year = 1993, + journal = {IEEE Transactions on Signal Processing}, + volume = 41, + number = 2, + pages = {821--833}, + doi = {10.1109/78.193220}, + url = {https://doi.org/10.1109/78.193220} +} +@article{unser1993a, + title = {B-spline signal processing. {II. Efficiency} design and applications}, + author = {Unser, M. and Aldroubi, A. and Eden, M.}, + year = 1993, + journal = {IEEE Transactions on Signal Processing}, + volume = 41, + number = 2, + pages = {834--848}, + doi = {10.1109/78.193221}, + url = {https://doi.org/10.1109/78.193221} +} +@article{unser1999, + title = {Splines: a perfect fit for signal and image processing}, + author = {Michael Unser}, + year = 1999, + journal = {IEEE Signal Processing Magazine}, + volume = 16, + number = 6, + pages = {22--38}, + doi = {10.1109/79.799930}, + url = {https://doi.org/10.1109/79.799930} +} +@article{vemuri2003, + title = {Image registration via level-set motion: Applications to atlas-based segmentation}, + author = {B.C. Vemuri and J. Ye and Y. Chen and C.M. Leonard}, + year = 2003, + journal = {Medical Image Analysis}, + volume = 7, + number = 1, + pages = {1--20}, + doi = {10.1016/S1361-8415(02)00063-4}, + issn = {1361-8415}, + url = {https://doi.org/10.1016/S1361-8415(02)00063-4} +} +@inproceedings{vercauteren2007, + title = {Non-parametric Diffeomorphic Image Registration with the Demons Algorithm}, + author = {Vercauteren, Tom and Pennec, Xavier and Perchant, Aymeric and Ayache, Nicholas}, + year = 2007, + booktitle = {Medical Image Computing and Computer-Assisted Intervention {(MICCAI)}}, + pages = {319--326}, + doi = {10.1007/978-3-540-75759-7_39}, + url = {https://doi.org/10.1007/978-3-540-75759-7_39} +} +@article{vincent1991, + title = {Morphological transformations of binary images with arbitrary structuring elements}, + author = {Luc Vincent}, + year = 1991, + journal = {Signal Processing}, + volume = 22, + number = 1, + pages = {3--23}, + doi = {10.1016/0165-1684(91)90025-E}, + url = {https://doi.org/10.1016/0165-1684(91)90025-E} +} +@article{vincent1993, + title = {Morphological grayscale reconstruction in image analysis: applications and efficient algorithms}, + author = {Luc Vincent}, + year = 1993, + journal = {IEEE Transactions on Image Processing}, + volume = 2, + number = 2, + pages = {176--201}, + doi = {10.1109/83.217222}, + url = {https://doi.org/10.1109/83.217222} +} +@article{viola1997, + title = {Alignment by Maximization of Mutual Information}, + author = {Viola, Paul and Wells III, William M.}, + year = 1997, + journal = {International Journal of Computer Vision}, + volume = 24, + number = 2, + pages = {137--154}, + doi = {10.1023/A:1007958904918}, + url = {https://doi.org/10.1023/A:1007958904918} +} +@inproceedings{warfield2002, + title = {Validation of Image Segmentation and Expert Quality with an Expectation-Maximization Algorithm}, + author = {Warfield, Simon K. and Zou, Kelly H. and Wells, William M.}, + year = 2002, + booktitle = {Medical Image Computing and Computer-Assisted Intervention {(MICCAI)}}, + pages = {298--306}, + doi = {10.1007/3-540-45786-0_37}, + url = {https://doi.org/10.1007/3-540-45786-0_37} +} +@article{westin2002, + title = {Processing and visualization for diffusion tensor {MRI}}, + year = 2002, + journal = {Medical Image Analysis}, + volume = 6, + number = 2, + pages = {93--108}, + doi = {10.1016/S1361-8415(02)00053-1}, + issn = {1361-8415}, + url = {https://doi.org/10.1016/S1361-8415(02)00053-1} +} +@inproceedings{westin2002a, + title = {A Dual Tensor Basis Solution to the Stejskal-Tanner Equations for {DT-MRI}}, + author = {Westin, C. F. and Maier, S. E.}, + year = 2002, + booktitle = {International Society for Magnetic Resonance in Medicine (ISMRM)}, + url = {https://cds.ismrm.org/ismrm-2002/PDF4/1166.PDF} +} +@inproceedings{whitaker2000, + title = {Reducing Aliasing Artifacts in Iso-Surfaces of Binary Volumes}, + author = {Whitaker, Ross T.}, + year = 2000, + booktitle = {IEEE Symposium on Volume Visualization (VV 2000)}, + pages = {23--32}, + doi = {10.1109/VV.2000.10004}, + url = {https://doi.org/10.1109/VV.2000.10004} +} +@inproceedings{whitaker2001, + title = {Variable-conductance, level-set curvature for image denoising}, + author = {Ross T. Whitaker and Xinwei Xue}, + year = 2001, + booktitle = {International Conference on Image Processing}, + volume = 3, + pages = {142--145}, + doi = {10.1109/ICIP.2001.958071}, + url = {https://doi.org/10.1109/ICIP.2001.958071} +} +@article{yen1995, + title = {A new criterion for automatic multilevel thresholding}, + author = {Jui-Cheng Yen and Fu-Juay Chang and Shyang Chang}, + year = 1995, + journal = {IEEE Transactions on Image Processing}, + volume = 4, + number = 3, + pages = {370--378}, + doi = {10.1109/83.366472}, + url = {https://doi.org/10.1109/83.366472} +} +@article{zijdenbos1994, + title = {Morphometric analysis of white matter lesions in {MR} images: method and validation}, + author = {Zijdenbos, A.P. and Dawant, B.M. and Margolin, R.A. and Palmer, A.C.}, + year = 1994, + journal = {IEEE Transactions on Medical Imaging}, + volume = 13, + number = 4, + pages = {716--724}, + doi = {10.1109/42.363096}, + url = {https://doi.org/10.1109/42.363096} +} diff --git a/Modules/Core/Common/include/itkConstSliceIterator.h b/Modules/Core/Common/include/itkConstSliceIterator.h index 82206b4d900..87d78f41245 100644 --- a/Modules/Core/Common/include/itkConstSliceIterator.h +++ b/Modules/Core/Common/include/itkConstSliceIterator.h @@ -40,8 +40,7 @@ namespace itk * * References: * Modeled after a slice iterator proposed by Bjarne Stroustrup - * in C++ Programming Language, Third Edition. Bjarne Stroustrup. Addison - * Wesley, Reading, MA. 1997. + * in \cite stroustrup1997. * * \ingroup Iterators * diff --git a/Modules/Core/Common/include/itkDiffusionTensor3D.h b/Modules/Core/Common/include/itkDiffusionTensor3D.h index b93e7ecf3c2..00553c826dc 100644 --- a/Modules/Core/Common/include/itkDiffusionTensor3D.h +++ b/Modules/Core/Common/include/itkDiffusionTensor3D.h @@ -64,10 +64,7 @@ namespace itk * NIA AG 17919, PI: E.V. Sullivan. * * - * \par References - * E. R. Melhem, S. Mori, G. Mukundan, M. A. Kraut, M. G. Pomper, and - * P. C. M. van Zijl, "Diffusion tensor MR imaging of the brain and white - * matter tractography," Am. J. Roentgenol., vol. 178, pp. 3-16, 2002. + * For algorithmic details see \cite melhem2002. * * \sa SymmetricSecondRankTensor * diff --git a/Modules/Core/Common/include/itkGaussianDerivativeOperator.h b/Modules/Core/Common/include/itkGaussianDerivativeOperator.h index 54fe0a314b5..90d93d81490 100644 --- a/Modules/Core/Common/include/itkGaussianDerivativeOperator.h +++ b/Modules/Core/Common/include/itkGaussianDerivativeOperator.h @@ -75,10 +75,8 @@ extern ITKCommon_EXPORT std::ostream & * lest the operator size become unreasonably large. * * References: - * The Gaussian kernel contained in this operator was described - * by Tony Lindeberg (Discrete Scale-Space Theory and the Scale-Space - * Primal Sketch. Dissertation. Royal Institute of Technology, Stockholm, - * Sweden. May 1991.). + * The Gaussian kernel contained in this operator was described in + * \cite lindeberg1999. * * \author Ivan Macia, Vicomtech, Spain, https://www.vicomtech.org/en * diff --git a/Modules/Core/Common/include/itkGaussianOperator.h b/Modules/Core/Common/include/itkGaussianOperator.h index e41a71dcb53..877ef57d33a 100644 --- a/Modules/Core/Common/include/itkGaussianOperator.h +++ b/Modules/Core/Common/include/itkGaussianOperator.h @@ -47,9 +47,7 @@ namespace itk * * References: * The Gaussian kernel contained in this operator was described - * by Tony Lindeberg (Discrete Scale-Space Theory and the Scale-Space - * Primal Sketch. Dissertation. Royal Institute of Technology, Stockholm, - * Sweden. May 1991.). + * in \cite lindeberg1991. * * \note GaussianOperator does not have any user-declared "special member function", * following the C++ Rule of Zero: the compiler will generate them if necessary. diff --git a/Modules/Core/Common/include/itkKernelFunctionBase.h b/Modules/Core/Common/include/itkKernelFunctionBase.h index 7ea9fbc921e..c70faf7b4fb 100644 --- a/Modules/Core/Common/include/itkKernelFunctionBase.h +++ b/Modules/Core/Common/include/itkKernelFunctionBase.h @@ -31,10 +31,7 @@ namespace itk * This class encapsulates the smoothing kernel used for statistical density * estimation and nonparametric regression. The basic idea of the kernel * approach is to weight observations by a smooth function (the kernel) - * to created a smoothed approximation. - * - * Reference: - * Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall. + * to create a smoothed approximation \cite silverman1986. * * \ingroup Functions * \ingroup ITKCommon diff --git a/Modules/Core/Common/include/itkMersenneTwisterRandomVariateGenerator.h b/Modules/Core/Common/include/itkMersenneTwisterRandomVariateGenerator.h index 8fcdca8bdcf..34c21644686 100644 --- a/Modules/Core/Common/include/itkMersenneTwisterRandomVariateGenerator.h +++ b/Modules/Core/Common/include/itkMersenneTwisterRandomVariateGenerator.h @@ -69,10 +69,7 @@ namespace Statistics * division, and it benefits from caches and pipelines. For more information * see the inventors' web page at http:*www.math.keio.ac.jp/~matumoto/emt.html * - * Reference - * M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally - * Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on - * Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. + * Algorithmic details can be found in \cite matsumoto1998. * * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, * Copyright (C) 2000 - 2003, Richard J. Wagner diff --git a/Modules/Core/Common/include/itkSliceIterator.h b/Modules/Core/Common/include/itkSliceIterator.h index 9a81a5bfca3..f2cd257fffa 100644 --- a/Modules/Core/Common/include/itkSliceIterator.h +++ b/Modules/Core/Common/include/itkSliceIterator.h @@ -38,8 +38,7 @@ namespace itk * * References: * Modeled after a slice iterator proposed by Bjarne Stroustrup - * in C++ Programming Language, Third Edition. Bjarne Stroustrup. Addison - * Wesley, Reading, MA. 1997. + * in \cite stroustrup1997. * * \ingroup Iterators * \ingroup ITKCommon diff --git a/Modules/Core/Common/include/itkSobelOperator.h b/Modules/Core/Common/include/itkSobelOperator.h index 20cb873986b..ca4e5558541 100644 --- a/Modules/Core/Common/include/itkSobelOperator.h +++ b/Modules/Core/Common/include/itkSobelOperator.h @@ -61,9 +61,7 @@ namespace itk * The current implementation of the Sobel operator is for 2 and 3 dimensions only. * The ND version is planned for future releases. * - * The extension to 3D is from the publication - * "Irwin Sobel. An Isotropic 3x3x3 Volume Gradient Operator. - * Technical report, Hewlett-Packard Laboratories, April 1995." + * The extension to 3D was described in \cite sobel1995. * * The Sobel operator in 3D has the kernel * diff --git a/Modules/Core/Common/include/itkSymmetricEigenAnalysis.h b/Modules/Core/Common/include/itkSymmetricEigenAnalysis.h index e2e6a4a5a8f..5fe6e1e0071 100644 --- a/Modules/Core/Common/include/itkSymmetricEigenAnalysis.h +++ b/Modules/Core/Common/include/itkSymmetricEigenAnalysis.h @@ -191,10 +191,9 @@ static constexpr EigenValueOrderEnum DoNotOrder = EigenValueOrderEnum::DoNotOrde * netlib/tred1.c * netlib/tred2.c * - * Reference: - * num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and - * wilkinson. - * handbook for auto. comp., vol.ii-linear algebra, 227-240(1971). + * For algorithmic descriptions see \cite bowdler1968 and + * \cite bowdler1971. + * * \ingroup ITKCommon */ @@ -385,9 +384,8 @@ class ITK_TEMPLATE_EXPORT SymmetricEigenAnalysis * Function adapted from netlib/tred1.c. * [Changed: remove static vars, enforce const correctness. * Use vnl routines as necessary]. - * Reference: - * num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson. - * handbook for auto. comp., vol.ii-linear algebra, 212-226(1971). */ + * For algorithmic descriptions see \cite martin1968 and \cite + * martin1971. */ void ReduceToTridiagonalMatrix(double * a, double * d, double * e, double * e2) const; @@ -409,9 +407,8 @@ class ITK_TEMPLATE_EXPORT SymmetricEigenAnalysis * Function adapted from netlib/tred2.c. * [Changed: remove static vars, enforce const correctness. * Use vnl routines as necessary]. - * Reference: - * num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson. - * handbook for auto. comp., vol.ii-linear algebra, 212-226(1971). */ + * For algorithmic descriptions see \cite martin1968 and \cite + * martin1971. */ void ReduceToTridiagonalMatrixAndGetTransformation(const double * a, double * d, double * e, double * z) const; @@ -433,9 +430,7 @@ class ITK_TEMPLATE_EXPORT SymmetricEigenAnalysis * * Reference * This subroutine is a translation of the algol procedure tql1, - * num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and - * wilkinson. - * handbook for auto. comp., vol.ii-linear algebra, 227-240(1971). + * \cite bowdler1968 and \cite bowdler1971. * * Questions and comments should be directed to Burton s. Garbow, * Mathematics and Computer Science Div., Argonne National Laboratory. @@ -472,9 +467,7 @@ class ITK_TEMPLATE_EXPORT SymmetricEigenAnalysis * * Reference * This subroutine is a translation of the algol procedure tql1, - * num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and - * wilkinson. - * handbook for auto. comp., vol.ii-linear algebra, 227-240(1971). + * \cite bowdler1968 and \cite bowdler1971. * * Questions and comments should be directed to Burton s. Garbow, * Mathematics and Computer Science Div., Argonne National Laboratory. diff --git a/Modules/Core/ImageFunction/include/itkBSplineDecompositionImageFilter.h b/Modules/Core/ImageFunction/include/itkBSplineDecompositionImageFilter.h index 9237ed15fef..e3a9216751b 100644 --- a/Modules/Core/ImageFunction/include/itkBSplineDecompositionImageFilter.h +++ b/Modules/Core/ImageFunction/include/itkBSplineDecompositionImageFilter.h @@ -42,20 +42,8 @@ namespace itk * \brief Calculates the B-Spline coefficients of an image. Spline order may be from 0 to 5. * * This class defines N-Dimension B-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993 and \cite unser1993a. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: Spline order must be between 0 and 5. * Spline order must be set before setting the image. diff --git a/Modules/Core/ImageFunction/include/itkBSplineInterpolateImageFunction.h b/Modules/Core/ImageFunction/include/itkBSplineInterpolateImageFunction.h index da26fb447bf..048d74bc87f 100644 --- a/Modules/Core/ImageFunction/include/itkBSplineInterpolateImageFunction.h +++ b/Modules/Core/ImageFunction/include/itkBSplineInterpolateImageFunction.h @@ -46,22 +46,8 @@ namespace itk * \brief Evaluates the B-Spline interpolation of an image. Spline order may be from 0 to 5. * * This class defines N-Dimension B-Spline transformation. - * It is based on: -\verbatim -[1] M. Unser, - "Splines: A Perfect Fit for Signal and Image Processing," - IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - November 1999. -[2] M. Unser, A. Aldroubi and M. Eden, - "B-Spline Signal Processing: Part I--Theory," - IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - February 1993. -[3] M. Unser, A. Aldroubi and M. Eden, - "B-Spline Signal Processing: Part II--Efficient Design and Applications," - IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - February 1993. -\endverbatim - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993 and \cite unser1993a. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * The B spline coefficients are calculated through the * BSplineDecompositionImageFilter diff --git a/Modules/Core/ImageFunction/include/itkWindowedSincInterpolateImageFunction.h b/Modules/Core/ImageFunction/include/itkWindowedSincInterpolateImageFunction.h index dc55964d335..512bc02fecd 100644 --- a/Modules/Core/ImageFunction/include/itkWindowedSincInterpolateImageFunction.h +++ b/Modules/Core/ImageFunction/include/itkWindowedSincInterpolateImageFunction.h @@ -155,12 +155,7 @@ class ITK_TEMPLATE_EXPORT BlackmanWindowFunction * approximated using a limited support 'windowed' sinc filter. * * \par - * This function is based on the following publication: - * - * \par - * Erik H. W. Meijering, Wiro J. Niessen, Josien P. W. Pluim, - * Max A. Viergever: Quantitative Comparison of Sinc-Approximating - * Kernels for Medical Image Interpolation. MICCAI 1999, pp. 210-217 + * This function is based on \cite meijering1999. * * \par * In this work, several 'windows' are estimated. In two dimensions, the diff --git a/Modules/Core/Mesh/include/itkBinaryMask3DMeshSource.h b/Modules/Core/Mesh/include/itkBinaryMask3DMeshSource.h index d11619c2226..4cb12394fa9 100644 --- a/Modules/Core/Mesh/include/itkBinaryMask3DMeshSource.h +++ b/Modules/Core/Mesh/include/itkBinaryMask3DMeshSource.h @@ -46,7 +46,9 @@ namespace itk * final combinations. In the first table, we record the final combination that * can be transformed from the current combination. The entries of the second * table are made up of the transforming sequence that is necessary for the - * current combination transform to one of the final combinations. + * current combination transform to one of the final combinations. For + * more details see \cite lorensen1987. + * * * \par * We then go through the 3D volume voxel by voxel, using those two tables we have defined @@ -58,10 +60,6 @@ namespace itk * pixels in the object region are assigned to "1", so the default value of ObjectValue is * set to "1" * - * \par REFERENCE - * W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", - * Computer Graphics 21, pp. 163-169, 1987. - * * \par INPUT * The input should be a 3D binary image. * diff --git a/Modules/Core/Mesh/include/itkSimplexMeshVolumeCalculator.h b/Modules/Core/Mesh/include/itkSimplexMeshVolumeCalculator.h index fbaa812f10e..dec361bd673 100644 --- a/Modules/Core/Mesh/include/itkSimplexMeshVolumeCalculator.h +++ b/Modules/Core/Mesh/include/itkSimplexMeshVolumeCalculator.h @@ -40,9 +40,7 @@ namespace itk * The original implementation has been replaced with an algorithm * based on the discrete form of the divergence theorem. The general * assumption here is that the model is of closed surface. For more - * details see the following reference (Alyassin A.M. et al, - * "Evaluation of new algorithms for the interactive measurement of - * surface area and volume", Med Phys 21(6) 1994.). + * details see \cite alyassin1994. * \ingroup ITKMesh * * \sphinx diff --git a/Modules/Core/QuadEdgeMesh/include/itkQuadEdge.h b/Modules/Core/QuadEdgeMesh/include/itkQuadEdge.h index 7cace770828..fe0d98a3492 100644 --- a/Modules/Core/QuadEdgeMesh/include/itkQuadEdge.h +++ b/Modules/Core/QuadEdgeMesh/include/itkQuadEdge.h @@ -119,7 +119,7 @@ namespace itk /** * \class QuadEdge * \brief Base class for the implementation of a quad-edge data structure as - * proposed in "Guibas and Stolfi 1985" + * proposed in \cite guibas1985. * * \author Alexandre Gouaillard, Leonardo Florez-Valencia, Eric Boix * diff --git a/Modules/Core/SpatialObjects/include/itkSpatialObject.h b/Modules/Core/SpatialObjects/include/itkSpatialObject.h index f12f8334bba..d3ccea8936c 100644 --- a/Modules/Core/SpatialObjects/include/itkSpatialObject.h +++ b/Modules/Core/SpatialObjects/include/itkSpatialObject.h @@ -38,8 +38,8 @@ namespace itk * \class SpatialObject * \brief Implementation of the composite pattern * - * The purpose of this class is to implement the composite pattern [Design - * Patterns, Gamma, 1995] within itk, so that it becomes easy to create an + * The purpose of this class is to implement the composite pattern + * \cite gamma1994 within ITK, so that it becomes easy to create an * environment containing objects within a scene, and to manipulate the * environment as a whole or any of its component objects. An * object has a list of transformations to transform object coordinates diff --git a/Modules/Core/Transform/include/itkElasticBodyReciprocalSplineKernelTransform.h b/Modules/Core/Transform/include/itkElasticBodyReciprocalSplineKernelTransform.h index 1bd79f46b07..e4c85ec7045 100644 --- a/Modules/Core/Transform/include/itkElasticBodyReciprocalSplineKernelTransform.h +++ b/Modules/Core/Transform/include/itkElasticBodyReciprocalSplineKernelTransform.h @@ -25,8 +25,7 @@ namespace itk /** \class ElasticBodyReciprocalSplineKernelTransform * This class defines the elastic body spline (EBS) transformation. * It is implemented in as straightforward a manner as possible from - * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, - * Vol. 16 No. 3 June 1997 + * \cite davis1997. * Taken from the paper: * The EBS "is based on a physical model of a homogeneous, isotropic, * three-dimensional elastic body. The model can approximate the way diff --git a/Modules/Core/Transform/include/itkElasticBodySplineKernelTransform.h b/Modules/Core/Transform/include/itkElasticBodySplineKernelTransform.h index c91abfe50d1..56b553ea3b6 100644 --- a/Modules/Core/Transform/include/itkElasticBodySplineKernelTransform.h +++ b/Modules/Core/Transform/include/itkElasticBodySplineKernelTransform.h @@ -27,8 +27,7 @@ namespace itk * * This class defines the elastic body spline (EBS) transformation. * It is implemented in as straightforward a manner as possible from - * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, - * Vol. 16 No. 3 June 1997 + * \cite davis1997. * Taken from the paper: * The EBS "is based on a physical model of a homogeneous, isotropic, * three-dimensional elastic body. The model can approximate the way diff --git a/Modules/Core/Transform/include/itkKernelTransform.h b/Modules/Core/Transform/include/itkKernelTransform.h index e1edc39834a..8a53eb7a123 100644 --- a/Modules/Core/Transform/include/itkKernelTransform.h +++ b/Modules/Core/Transform/include/itkKernelTransform.h @@ -34,9 +34,8 @@ namespace itk /** * \class KernelTransform * Intended to be a base class for elastic body spline and thin plate spline. - * This is implemented in as straightforward a manner as possible from the - * IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, Vol. 16, - * No. 3 June 1997. Notation closely follows their paper, so if you have it + * This is implemented in as straightforward a manner as possible from + * \cite davis1997. Notation closely follows the paper, so if you have it * in front of you, this code will make a lot more sense. * * KernelTransform: @@ -49,10 +48,7 @@ namespace itk * This formulation allows the stiffness of the spline to * be adjusted, allowing the spline to vary from interpolating the * landmarks to approximating the landmarks. This part of the - * formulation is based on the short paper by R. Sprengel, K. Rohr, - * H. Stiehl. "Thin-Plate Spline Approximation for Image - * Registration". In 18th International Conference of the IEEE - * Engineering in Medicine and Biology Society. 1996. + * formulation is based on \cite sprengel1996. * * * \ingroup ITKTransform diff --git a/Modules/Core/Transform/include/itkThinPlateR2LogRSplineKernelTransform.h b/Modules/Core/Transform/include/itkThinPlateR2LogRSplineKernelTransform.h index 1f1f24d9f43..b75037aaf70 100644 --- a/Modules/Core/Transform/include/itkThinPlateR2LogRSplineKernelTransform.h +++ b/Modules/Core/Transform/include/itkThinPlateR2LogRSplineKernelTransform.h @@ -25,8 +25,7 @@ namespace itk /** \class ThinPlateR2LogRSplineKernelTransform * This class defines the thin plate spline (TPS) transformation. * It is implemented in as straightforward a manner as possible from - * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, - * Vol. 16 No. 3 June 1997. + * \cite davis1997. * * The kernel used in this variant of TPS is \f$ R^2 log(R) \f$ * diff --git a/Modules/Core/Transform/include/itkThinPlateSplineKernelTransform.h b/Modules/Core/Transform/include/itkThinPlateSplineKernelTransform.h index f589c5ae025..52469b6704e 100644 --- a/Modules/Core/Transform/include/itkThinPlateSplineKernelTransform.h +++ b/Modules/Core/Transform/include/itkThinPlateSplineKernelTransform.h @@ -25,8 +25,7 @@ namespace itk /** \class ThinPlateSplineKernelTransform * This class defines the thin plate spline (TPS) transformation. * It is implemented in as straightforward a manner as possible from - * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, - * Vol. 16 No. 3 June 1997 + * \cite davis1997. * * \ingroup ITKTransform */ diff --git a/Modules/Core/Transform/include/itkVolumeSplineKernelTransform.h b/Modules/Core/Transform/include/itkVolumeSplineKernelTransform.h index 60691f5256f..c30fd4593c5 100644 --- a/Modules/Core/Transform/include/itkVolumeSplineKernelTransform.h +++ b/Modules/Core/Transform/include/itkVolumeSplineKernelTransform.h @@ -25,8 +25,7 @@ namespace itk /** \class VolumeSplineKernelTransform * This class defines the thin plate spline (TPS) transformation. * It is implemented in as straightforward a manner as possible from - * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, - * Vol. 16 No. 3 June 1997 + * \cite davis1997. * * \ingroup ITKTransform */ diff --git a/Modules/Filtering/AnisotropicSmoothing/include/itkAnisotropicDiffusionFunction.h b/Modules/Filtering/AnisotropicSmoothing/include/itkAnisotropicDiffusionFunction.h index 5d311eccb8f..d84e7c09ba9 100644 --- a/Modules/Filtering/AnisotropicSmoothing/include/itkAnisotropicDiffusionFunction.h +++ b/Modules/Filtering/AnisotropicSmoothing/include/itkAnisotropicDiffusionFunction.h @@ -119,10 +119,7 @@ namespace itk * application is wholly dependent on the results you want from a specific data * set and the number or iterations you perform. * - * \par References - * Pietro Perona and Jitendra Malik, ``Scale-space and edge detection using - * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine - * Intelligence, vol. 12, pp. 629-639, 1990. + * For additional details see \cite perona1990. * * \sa VectorAnisotropicDiffusionFunction * \sa ScalarAnisotropicDiffusionFunction diff --git a/Modules/Filtering/AnisotropicSmoothing/include/itkCurvatureNDAnisotropicDiffusionFunction.h b/Modules/Filtering/AnisotropicSmoothing/include/itkCurvatureNDAnisotropicDiffusionFunction.h index 7d97fecf515..58cb6050346 100644 --- a/Modules/Filtering/AnisotropicSmoothing/include/itkCurvatureNDAnisotropicDiffusionFunction.h +++ b/Modules/Filtering/AnisotropicSmoothing/include/itkCurvatureNDAnisotropicDiffusionFunction.h @@ -59,11 +59,7 @@ namespace itk * * \f[ \nabla \cdot \frac{\nabla f}{\mid \nabla f \mid} \f] . * - * \par References - * R. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for - * Image Denoising, International Conference on Image Processing, 2001 - * pp. 142-145, Vol.3. - * + * For additional information see \cite whitaker2001. * * \sa AnisotropicDiffusionFunction * \ingroup FiniteDifferenceFunctions diff --git a/Modules/Filtering/AnisotropicSmoothing/include/itkGradientNDAnisotropicDiffusionFunction.h b/Modules/Filtering/AnisotropicSmoothing/include/itkGradientNDAnisotropicDiffusionFunction.h index f3ee6f4e648..5674725be56 100644 --- a/Modules/Filtering/AnisotropicSmoothing/include/itkGradientNDAnisotropicDiffusionFunction.h +++ b/Modules/Filtering/AnisotropicSmoothing/include/itkGradientNDAnisotropicDiffusionFunction.h @@ -30,7 +30,7 @@ namespace itk * This class implements an N-dimensional version of the classic Perona-Malik * anisotropic diffusion equation for scalar-valued images. See * itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion - * framework and equation. + * framework and equation. For additional information see \cite perona1990. * * \par * The conductance term for this implementation is chosen as a function of the @@ -44,11 +44,6 @@ namespace itk * in the Perona-Malik paper below, but uses a more robust technique * for gradient magnitude estimation and has been generalized to N-dimensions. * - * \par References - * Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using - * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine - * Intelligence, vol. 12, pp. 629-639, 1990. - * * \sa AnisotropicDiffusionFunction * \sa VectorAnisotropicDiffusionFunction * \sa VectorGradientAnisotropicDiffusionFunction diff --git a/Modules/Filtering/AntiAlias/include/itkAntiAliasBinaryImageFilter.h b/Modules/Filtering/AntiAlias/include/itkAntiAliasBinaryImageFilter.h index 578f47c63f2..5b2f37363f6 100644 --- a/Modules/Filtering/AntiAlias/include/itkAntiAliasBinaryImageFilter.h +++ b/Modules/Filtering/AntiAlias/include/itkAntiAliasBinaryImageFilter.h @@ -52,15 +52,10 @@ namespace itk * * \par NOTES * This implementation uses a sparse field level set solver instead of the - * narrow band implementation described in the reference below, which may + * narrow band implementation described in \cite whitaker2000, which may * introduce some differences in how fast and how accurately (in terms of RMS * error) the solution converges. * - * \par REFERENCES - * Whitaker, Ross. "Reducing Aliasing Artifacts In Iso-Surfaces of Binary - * Volumes" IEEE Volume Visualization and Graphics Symposium, October 2000, - * pp.23-32. - * * \par PARAMETERS * The MaximumRMSChange parameter is used to determine when the solution has * converged. A lower value will result in a tighter-fitting solution, but diff --git a/Modules/Filtering/BiasCorrection/include/itkCompositeValleyFunction.h b/Modules/Filtering/BiasCorrection/include/itkCompositeValleyFunction.h index 7515ec07f49..bf1ce3fcec3 100644 --- a/Modules/Filtering/BiasCorrection/include/itkCompositeValleyFunction.h +++ b/Modules/Filtering/BiasCorrection/include/itkCompositeValleyFunction.h @@ -60,15 +60,8 @@ namespace itk * by Martin Styner, Univ. of North Carolina at Chapel Hill, and his * colleagues. * - * For more details. refer to the following articles. - * "Parametric estimate of intensity inhomogeneities applied to MRI" - * Martin Styner, G. Gerig, Christian Brechbuehler, Gabor Szekely, - * IEEE TRANSACTIONS ON MEDICAL IMAGING; 19(3), pp. 153-165, 2000, - * (https://www.cs.unc.edu/~styner/docs/tmi00.pdf) + * For more details refer to \cite styner2000 and \cite styner1997. * - * "Evaluation of 2D/3D bias correction with 1+1ES-optimization" - * Martin Styner, Prof. Dr. G. Gerig (IKT, BIWI, ETH Zuerich), TR-197 - * (https://www.cs.unc.edu/~styner/docs/StynerTR97.pdf) * \ingroup ITKBiasCorrection */ class TargetClass diff --git a/Modules/Filtering/BiasCorrection/include/itkN4BiasFieldCorrectionImageFilter.h b/Modules/Filtering/BiasCorrection/include/itkN4BiasFieldCorrectionImageFilter.h index 76930f0a916..1372bbc2e7b 100644 --- a/Modules/Filtering/BiasCorrection/include/itkN4BiasFieldCorrectionImageFilter.h +++ b/Modules/Filtering/BiasCorrection/include/itkN4BiasFieldCorrectionImageFilter.h @@ -65,7 +65,7 @@ namespace itk * 4. The filter returns the corrected image. If the bias field is wanted, one * can reconstruct it using the class itkBSplineControlPointImageFilter. * See the IJ article and the test file for an example. - * 5. The 'Z' parameter in Sled's 1998 paper is the square root + * 5. The 'Z' parameter in Sled's 1998 paper \cite sled1998 is the square root * of the class variable 'm_WienerFilterNoise'. * * The basic algorithm iterates between sharpening the intensity histogram of @@ -77,15 +77,7 @@ namespace itk * Contributed by Nicholas J. Tustison, James C. Gee in the Insight Journal * paper: https://doi.org/10.54294/jculxw * - * \par REFERENCE - * - * J.G. Sled, A.P. Zijdenbos and A.C. Evans. "A Nonparametric Method for - * Automatic Correction of Intensity Nonuniformity in Data" - * IEEE Transactions on Medical Imaging, Vol 17, No 1. Feb 1998. - * - * N.J. Tustison, B.B. Avants, P.A. Cook, Y. Zheng, A. Egan, P.A. Yushkevich, - * and J.C. Gee. "N4ITK: Improved N3 Bias Correction" - * IEEE Transactions on Medical Imaging, 29(6):1310-1320, June 2010. + * Algorithmic details can be found in \cite sled1998 and \cite tustison2010. * * \ingroup ITKBiasCorrection */ diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryDilateImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryDilateImageFilter.h index ed4a8b85e26..93cf0dec40c 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryDilateImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryDilateImageFilter.h @@ -49,15 +49,8 @@ namespace itk * reasonable choice of structuring element is * itk::BinaryBallStructuringElement. * - * This implementation is based on the papers: - * - * L.Vincent "Morphological transformations of binary images with - * arbitrary structuring elements", and - * - * N.Nikopoulos et al. "An efficient algorithm for 3d binary - * morphological transformations with 3d structuring elements - * for arbitrary size and shape". IEEE Transactions on Image - * Processing. Vol. 9. No. 3. 2000. pp. 283-286. + * This implementation is based on the papers \cite vincent1991 and + * \cite nikopoulos1997. * * \sa ImageToImageFilter BinaryErodeImageFilter BinaryMorphologyImageFilter * \ingroup ITKBinaryMathematicalMorphology diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryErodeImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryErodeImageFilter.h index 05feaae0588..9f5e306e3e9 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryErodeImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryErodeImageFilter.h @@ -50,16 +50,8 @@ namespace itk * reasonable choice of structuring element is * itk::BinaryBallStructuringElement. * - * This implementation is based on the papers: - * - * L.Vincent "Morphological transformations of binary images with - * arbitrary structuring elements", and - * - * N.Nikopoulos et al. "An efficient algorithm for 3d binary - * morphological transformations with 3d structuring elements - * for arbitrary size and shape". IEEE Transactions on Image - * Processing. Vol. 9. No. 3. 2000. pp. 283-286. - * + * This implementation is based on the papers \cite vincent1991 and + * \cite nikopoulos1997. * * \sa ImageToImageFilter BinaryDilateImageFilter BinaryMorphologyImageFilter * \ingroup ITKBinaryMathematicalMorphology diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryMorphologyImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryMorphologyImageFilter.h index 6eff3b6634a..65b7f8ef376 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryMorphologyImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryMorphologyImageFilter.h @@ -34,15 +34,8 @@ namespace itk * * BinaryMorphologyImageFilter is a base class for fast binary * morphological operations. The implementation of this class and its - * subclasses are based on the papers: - * - * L.Vincent "Morphological transformations of binary images with - * arbitrary structuring elements", and - * - * N.Nikopoulos et al. "An efficient algorithm for 3d binary - * morphological transformations with 3d structuring elements - * for arbitrary size and shape". IEEE Transactions on Image - * Processing. Vol. 9. No. 3. 2000. pp. 283-286. + * subclasses are based on the papers \cite vincent1991 and + * \cite nikopoulos1997. * * Grayscale images can be processed as binary images by selecting a * "ForegroundValued" (which subclasses may alias as "DilateValue" or diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryPruningImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryPruningImageFilter.h index 6c9dd323088..7b24714a0ba 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryPruningImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryPruningImageFilter.h @@ -37,11 +37,7 @@ namespace itk * * This filter is a sequential pruning algorithm and known to be computational time * dependable of the image size. The algorithm is the N-dimensional version - * of that given for two dimensions in: - * - * Rafael C. Gonzales and Richard E. Woods. - * Digital Image Processing. - * Addison Wesley, 491-494, (1993). + * of that given for two dimensions in \cite gonzales1993. * * \sa MorphologyImageFilter * \sa BinaryErodeImageFilter diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryThinningImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryThinningImageFilter.h index 2882261324f..5ec1cb0750b 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryThinningImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkBinaryThinningImageFilter.h @@ -41,11 +41,7 @@ namespace itk * * This filter is a sequential thinning algorithm and known to be computational time * dependable on the image size. The algorithm corresponds with the 2D - * implementation described in: - * - * Rafael C. Gonzales and Richard E. Woods. - * Digital Image Processing. - * Addison Wesley, 491-494, (1993). + * implementation described in \cite gonzales1993. * * To do: Make this filter ND. * diff --git a/Modules/Filtering/BinaryMathematicalMorphology/include/itkFastIncrementalBinaryDilateImageFilter.h b/Modules/Filtering/BinaryMathematicalMorphology/include/itkFastIncrementalBinaryDilateImageFilter.h index 1784de61220..d5942c4aa1d 100644 --- a/Modules/Filtering/BinaryMathematicalMorphology/include/itkFastIncrementalBinaryDilateImageFilter.h +++ b/Modules/Filtering/BinaryMathematicalMorphology/include/itkFastIncrementalBinaryDilateImageFilter.h @@ -30,15 +30,8 @@ namespace itk * \brief Fast binary dilation * * FastIncrementalBinaryDilateImageFilter is a binary dilation - * morphologic operation. This implementation is based on the papers: - * - * L.Vincent "Morphological transformations of binary images with - * arbitrary structuring elements", and - * - * N.Nikopoulos et al. "An efficient algorithm for 3d binary - * morphological transformations with 3d structuring elements - * for arbitrary size and shape". IEEE Transactions on Image - * Processing. Vol. 9. No. 3. 2000. pp. 283-286. + * morphologic operation. This implementation is based on the papers + * \cite vincent1991 and \cite nikopoulos1997. * * This filter is maintained for backward compatibility. It is now a * subclass of BinaryDilateImageFilter (the fast incremental binary diff --git a/Modules/Filtering/Convolution/include/itkMaskedFFTNormalizedCorrelationImageFilter.h b/Modules/Filtering/Convolution/include/itkMaskedFFTNormalizedCorrelationImageFilter.h index a46d23f7ccd..62dc901f84d 100644 --- a/Modules/Filtering/Convolution/include/itkMaskedFFTNormalizedCorrelationImageFilter.h +++ b/Modules/Filtering/Convolution/include/itkMaskedFFTNormalizedCorrelationImageFilter.h @@ -125,11 +125,7 @@ namespace itk * type. You will get a compilation error if the pixel type of the * output image is not float or double. * - * References: - * 1) D. Padfield. "Masked object registration in the Fourier domain." - * Transactions on Image Processing. - * 2) D. Padfield. "Masked FFT registration". In Proc. Computer - * Vision and Pattern Recognition, 2010. + * For algorithmic details see \cite padfield 2012 and \cite padfield2010. * * \author: Dirk Padfield, GE Global Research, padfield\@research.ge.com * \ingroup ITKConvolution diff --git a/Modules/Filtering/CurvatureFlow/include/itkBinaryMinMaxCurvatureFlowImageFilter.h b/Modules/Filtering/CurvatureFlow/include/itkBinaryMinMaxCurvatureFlowImageFilter.h index 8589636805f..fb4c093e49f 100644 --- a/Modules/Filtering/CurvatureFlow/include/itkBinaryMinMaxCurvatureFlowImageFilter.h +++ b/Modules/Filtering/CurvatureFlow/include/itkBinaryMinMaxCurvatureFlowImageFilter.h @@ -28,7 +28,7 @@ namespace itk * \brief Denoise a binary image using min/max curvature flow. * * BinaryMinMaxCurvatureFlowImageFilter implements a curvature driven image - * denoising algorithm. This filter assumes that the image is essentially + * denoising algorithm \cite sethian1999. This filter assumes that the image is essentially * binary: consisting of two classes. Iso-brightness contours in the input * image are viewed as a level set. The level set is then evolved using * a curvature-based speed function: @@ -60,10 +60,6 @@ namespace itk * same dimensions. This filter also requires that the output image pixels * are of a real type. This filter works for any dimensional images. * - * Reference: - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Chapter 16, Second edition, 1999. - * * \sa BinaryMinMaxCurvatureFlowFunction * \sa CurvatureFlowImageFilter * \sa MinMaxCurvatureFlowImageFilter diff --git a/Modules/Filtering/CurvatureFlow/include/itkCurvatureFlowImageFilter.h b/Modules/Filtering/CurvatureFlow/include/itkCurvatureFlowImageFilter.h index 73c3d7ab0bc..81194b904c1 100644 --- a/Modules/Filtering/CurvatureFlow/include/itkCurvatureFlowImageFilter.h +++ b/Modules/Filtering/CurvatureFlow/include/itkCurvatureFlowImageFilter.h @@ -28,7 +28,7 @@ namespace itk * \brief Denoise an image using curvature driven flow. * * CurvatureFlowImageFilter implements a curvature driven image denoising - * algorithm. Iso-brightness contours in the grayscale input image are viewed + * algorithm \cite sethian1999. Iso-brightness contours in the grayscale input image are viewed * as a level set. The level set is then evolved using a curvature-based speed * function: * @@ -69,10 +69,6 @@ namespace itk * same dimensions. This filter also requires that the output image pixels * are of a floating point type. This filter works for any dimensional images. * - * Reference: - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Chapter 16, Second edition, 1999. - * * \sa DenseFiniteDifferenceImageFilter * \sa CurvatureFlowFunction * \sa MinMaxCurvatureFlowImageFilter diff --git a/Modules/Filtering/CurvatureFlow/include/itkMinMaxCurvatureFlowImageFilter.h b/Modules/Filtering/CurvatureFlow/include/itkMinMaxCurvatureFlowImageFilter.h index ba3c79ac693..85023456cd6 100644 --- a/Modules/Filtering/CurvatureFlow/include/itkMinMaxCurvatureFlowImageFilter.h +++ b/Modules/Filtering/CurvatureFlow/include/itkMinMaxCurvatureFlowImageFilter.h @@ -28,7 +28,7 @@ namespace itk * \brief Denoise an image using min/max curvature flow. * * MinMaxCurvatureFlowImageFilter implements a curvature driven image denoising - * algorithm. Iso-brightness contours in the grayscale input image are viewed + * algorithm \cite sethian1999. Iso-brightness contours in the grayscale input image are viewed * as a level set. The level set is then evolved using a curvature-based speed * function: * @@ -61,10 +61,6 @@ namespace itk * however for dimensions greater than 3D, an expensive brute-force search * is used to compute the local threshold. * - * Reference: - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Chapter 16, Second edition, 1999. - * * \sa MinMaxCurvatureFlowFunction * \sa CurvatureFlowImageFilter * \sa BinaryMinMaxCurvatureFlowImageFilter diff --git a/Modules/Filtering/Deconvolution/include/itkLandweberDeconvolutionImageFilter.h b/Modules/Filtering/Deconvolution/include/itkLandweberDeconvolutionImageFilter.h index 9d5d053c195..bccd5143c50 100644 --- a/Modules/Filtering/Deconvolution/include/itkLandweberDeconvolutionImageFilter.h +++ b/Modules/Filtering/Deconvolution/include/itkLandweberDeconvolutionImageFilter.h @@ -61,8 +61,7 @@ class ITK_TEMPLATE_EXPORT LandweberMethod * algorithm. * * This filter implements the Landweber deconvolution algorithm as - * defined in Bertero M and Boccacci P, "Introduction to Inverse - * Problems in Imaging", 1998. The algorithm assumes that the input + * defined in \cite bertero1998. The algorithm assumes that the input * image has been formed by a linear shift-invariant system with a * known kernel. * diff --git a/Modules/Filtering/Deconvolution/include/itkRichardsonLucyDeconvolutionImageFilter.h b/Modules/Filtering/Deconvolution/include/itkRichardsonLucyDeconvolutionImageFilter.h index d4c4fdf4903..7b316a43c8e 100644 --- a/Modules/Filtering/Deconvolution/include/itkRichardsonLucyDeconvolutionImageFilter.h +++ b/Modules/Filtering/Deconvolution/include/itkRichardsonLucyDeconvolutionImageFilter.h @@ -32,8 +32,7 @@ namespace itk * algorithm. * * This filter implements the Richardson-Lucy deconvolution algorithm - * as defined in Bertero M and Boccacci P, "Introduction to Inverse - * Problems in Imaging", 1998. The algorithm assumes that the input + * as defined in \cite bertero1998. The algorithm assumes that the input * image has been formed by a linear shift-invariant system with a * known kernel. * diff --git a/Modules/Filtering/Deconvolution/include/itkWienerDeconvolutionImageFilter.h b/Modules/Filtering/Deconvolution/include/itkWienerDeconvolutionImageFilter.h index e209d075ffa..cd13ae20e81 100644 --- a/Modules/Filtering/Deconvolution/include/itkWienerDeconvolutionImageFilter.h +++ b/Modules/Filtering/Deconvolution/include/itkWienerDeconvolutionImageFilter.h @@ -64,7 +64,7 @@ namespace itk * and uses the result as the estimate of \f$P_f(\omega)\f$. * * For further information on the Wiener deconvolution filter, please see - * "Digital Signal Processing" by Kenneth R. Castleman, Prentice Hall, 1995 + * \cite castleman1995. * * \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France * \author Chris Mullins, The University of North Carolina at Chapel Hill diff --git a/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingBaseImageFilter.h b/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingBaseImageFilter.h index 3fa77ae658c..366f6f58eb9 100644 --- a/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingBaseImageFilter.h +++ b/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingBaseImageFilter.h @@ -101,27 +101,13 @@ operator<<(std::ostream & out, const PatchBasedDenoisingBaseImageFilterEnums::Fi * image, and the weights balancing the regularization and data fidelity when the noise model is * known. * - * This class of methods stems from the following two independent and simultaneous publications: - * - * Suyash P. Awate, Ross T. Whitaker. - * Higher-Order Image Statistics for Unsupervised, Information-Theoretic, Adaptive, Image Filtering. - * IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR) 2005; (2):44-51. - * - * Antoni Buades, Bartomeu Coll, Jean-Michel Morel. - * A Non-Local Algorithm for Image Denoising. - * IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR) 2005; (2):60-65. + * This class of methods stems from the following two independent and + * simultaneous publications \cite awate2005 and \cite buades2005. * * While the former work considers the denoising algorithm as performing entropy reduction using * nonparametric density estimation, the latter work treats it as nonparametric regression. Details - * underlying this class of methods appear in: - * - * Suyash P. Awate, Ross T. Whitaker. - * Unsupervised, Information-Theoretic, Adaptive Image Filtering for Image Restoration. - * IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2006; 28(3):364-376. - * - * Antoni Buades, Bartomeu Coll, Jean-Michel Morel. - * Nonlocal Image and Movie Denoising. - * International Journal of Computer Vision (IJCV) 2008; 76(2):123-139. + * underlying this class of methods appear in \cite awate2006 and + * \cite buades2008. * * This class provides the base software framework for implementing patch-based denoising methods * for multi-dimensional and multi-channel (i.e. vector-valued pixels) images. This framework is diff --git a/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingImageFilter.h b/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingImageFilter.h index 2423ba0092b..b70bb60f544 100644 --- a/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingImageFilter.h +++ b/Modules/Filtering/Denoising/include/itkPatchBasedDenoisingImageFilter.h @@ -51,8 +51,8 @@ namespace itk * parameter (namely, sigma) using leave-one-out cross validation. It implements schemes for random * sampling of patches non-locally (from the entire image) as well as semi-locally (from the spatial * proximity of the pixel being denoised at the specific point in time). It implements a specific - * scheme for defining patch weights (mask) as described in Awate and Whitaker 2005 IEEE CVPR and - * 2006 IEEE TPAMI. + * scheme for defining patch weights (mask) as described in \cite + * awate2005 and \cite awate2006. * * \ingroup Filtering * \ingroup ITKDenoising @@ -170,10 +170,8 @@ class ITK_TEMPLATE_EXPORT PatchBasedDenoisingImageFilter /** Set/Get flag indicating whether the fast algorithm for tensor computations should be used. * * Specifically, when this flag is true (default) or On, a faster implementation of the 3x3 - * symmetric positive-definite eigensystem analysis will be used. See - * Hasan KM, Basser PJ, Parker DL, Alexander AL. - * Analytical computation of the eigenvalues and eigenvectors in DT-MRI. - * J Magn Reson 2001; 152: 41-47. + * symmetric positive-definite eigensystem analysis will be + * used. See \cite hasan2001. * This faster algorithm may be slightly less accurate and possibly less stable in the presence * of noise. So far in practice it has been shown to work well. * diff --git a/Modules/Filtering/DiffusionTensorImage/include/itkDiffusionTensor3DReconstructionImageFilter.h b/Modules/Filtering/DiffusionTensorImage/include/itkDiffusionTensor3DReconstructionImageFilter.h index b2afda8499b..500264ee82f 100644 --- a/Modules/Filtering/DiffusionTensorImage/include/itkDiffusionTensor3DReconstructionImageFilter.h +++ b/Modules/Filtering/DiffusionTensorImage/include/itkDiffusionTensor3DReconstructionImageFilter.h @@ -104,13 +104,7 @@ operator<<(std::ostream & out, const DiffusionTensor3DReconstructionImageFilterE * images (expected to be scalar data types) and the internal representation * of the DiffusionTensor3D pixel (double, float etc). * - * \par References: - * \li[1] - * C.F.Westin, S.E.Maier, H.Mamata, A.Nabavi, F.A.Jolesz, R.Kikinis, - * "Processing and visualization for Diffusion tensor MRI", Medical image - * Analysis, 2002, pp 93-108. - * \li[2] - * A Dual Tensor Basis Solution to the Stejskal-Tanner Equations for DT-MRI + * For additional details see \cite westin2002 and \cite westin2002a. * * \warning * Although this filter has been written to support multiple threads, please diff --git a/Modules/Filtering/DisplacementField/include/itkBSplineExponentialDiffeomorphicTransform.h b/Modules/Filtering/DisplacementField/include/itkBSplineExponentialDiffeomorphicTransform.h index feadba9dea9..e43efa94c50 100644 --- a/Modules/Filtering/DisplacementField/include/itkBSplineExponentialDiffeomorphicTransform.h +++ b/Modules/Filtering/DisplacementField/include/itkBSplineExponentialDiffeomorphicTransform.h @@ -44,8 +44,7 @@ namespace itk * \c ExponentialDisplacementImageFilter to yield both the forward and inverse * displacement fields. * - * \li J. Ashburner. A Fast Diffeomorphic Image Registration Algorithm. - * NeuroImage, 38(1):95-113, 2007. + * See \cite ashburner2007 for more details. * * \author Nick Tustison * \author Brian Avants diff --git a/Modules/Filtering/DisplacementField/include/itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h b/Modules/Filtering/DisplacementField/include/itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h index 9fce5a837fd..05fd0661668 100644 --- a/Modules/Filtering/DisplacementField/include/itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h +++ b/Modules/Filtering/DisplacementField/include/itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h @@ -36,16 +36,11 @@ namespace itk * * This class takes as input a displacement field, smooths it on demand using * the specified B-spline parameters. This represents an alternative approach - * to B-spline (FFD) registration and is explained more in detail in the - * reference given below. + * to B-spline (FFD) registration and is explained more in detail in + * \cite tustison2009. * * \author Nicholas J. Tustison * - * \par REFERENCE - * NJ Tustison, BB Avants, JC Gee, "Directly Manipulated Free-Form Deformation - * Image Registration", IEEE Transactions on Image Processing, 18(3):624-635, - * 2009. - * * \ingroup ITKDisplacementField */ template diff --git a/Modules/Filtering/DisplacementField/include/itkGaussianExponentialDiffeomorphicTransform.h b/Modules/Filtering/DisplacementField/include/itkGaussianExponentialDiffeomorphicTransform.h index f6b558b6f89..86f3e632564 100644 --- a/Modules/Filtering/DisplacementField/include/itkGaussianExponentialDiffeomorphicTransform.h +++ b/Modules/Filtering/DisplacementField/include/itkGaussianExponentialDiffeomorphicTransform.h @@ -44,8 +44,7 @@ namespace itk * \c ExponentialDisplacementImageFilter to yield both the forward and inverse * displacement fields. * - * \li J. Ashburner. A Fast Diffeomorphic Image Registration Algorithm. - * NeuroImage, 38(1):95-113, 2007. + * See \cite ashburner2007 for more details. * * \author Nick Tustison * \author Brian Avants diff --git a/Modules/Filtering/DistanceMap/include/itkDanielssonDistanceMapImageFilter.h b/Modules/Filtering/DistanceMap/include/itkDanielssonDistanceMapImageFilter.h index 175a9d7fe4f..076862f0403 100644 --- a/Modules/Filtering/DistanceMap/include/itkDanielssonDistanceMapImageFilter.h +++ b/Modules/Filtering/DistanceMap/include/itkDanielssonDistanceMapImageFilter.h @@ -47,10 +47,7 @@ namespace itk * * This filter is N-dimensional and known to be efficient * in computational time. The algorithm is the N-dimensional version - * of the 4SED algorithm given for two dimensions in: - * - * Danielsson, Per-Erik. Euclidean Distance Mapping. Computer - * Graphics and Image Processing 14, 227-248 (1980). + * of the 4SED algorithm given for two dimensions in \cite danielsson1980. * * \ingroup ImageFeatureExtraction * \ingroup ITKDistanceMap diff --git a/Modules/Filtering/DistanceMap/include/itkFastChamferDistanceImageFilter.h b/Modules/Filtering/DistanceMap/include/itkFastChamferDistanceImageFilter.h index ca7c1565b27..2e7735548c4 100644 --- a/Modules/Filtering/DistanceMap/include/itkFastChamferDistanceImageFilter.h +++ b/Modules/Filtering/DistanceMap/include/itkFastChamferDistanceImageFilter.h @@ -46,7 +46,10 @@ namespace itk * Fast and Accurate Redistancing for Level Set Methods * `Krissian K. and Westin C.F.', * EUROCAST NeuroImaging Workshop Las Palmas Spain, - * Ninth International Conference on Computer Aided Systems Theory , pages 48-51, Feb 2003. + * Ninth International Conference on Computer Aided Systems Theory , + * pages 48-51, Feb 2003. + * NOTE: Attribution is incorrect, the manuscript does not appear to be + * part of the EUROCAST'03 proceedings (https://doi.org/10.1007/b13239). * * \ingroup ImageFeatureExtraction * \ingroup ITKDistanceMap diff --git a/Modules/Filtering/DistanceMap/include/itkIsoContourDistanceImageFilter.h b/Modules/Filtering/DistanceMap/include/itkIsoContourDistanceImageFilter.h index d128087a398..a7c63d2db12 100644 --- a/Modules/Filtering/DistanceMap/include/itkIsoContourDistanceImageFilter.h +++ b/Modules/Filtering/DistanceMap/include/itkIsoContourDistanceImageFilter.h @@ -49,6 +49,8 @@ namespace itk *`Krissian K. and Westin C.F.', * EUROCAST NeuroImaging Workshop Las Palmas Spain, * Ninth International Conference on Computer Aided Systems Theory , pages 48-51, Feb 2003. + * NOTE: Attribution is incorrect, the manuscript does not appear to be + * part of the EUROCAST'03 proceedings (https://doi.org/10.1007/b13239). * * * \ingroup LevelSetSegmentation diff --git a/Modules/Filtering/DistanceMap/include/itkSignedMaurerDistanceMapImageFilter.h b/Modules/Filtering/DistanceMap/include/itkSignedMaurerDistanceMapImageFilter.h index 3aceaad932e..7aa5e73b961 100644 --- a/Modules/Filtering/DistanceMap/include/itkSignedMaurerDistanceMapImageFilter.h +++ b/Modules/Filtering/DistanceMap/include/itkSignedMaurerDistanceMapImageFilter.h @@ -50,11 +50,7 @@ namespace itk * the itk::DanielssonDistanceImageFilter class except it does not return * the Voronoi map. * - * Reference: - * C. R. Maurer, Jr., R. Qi, and V. Raghavan, "A Linear Time Algorithm - * for Computing Exact Euclidean Distance Transforms of Binary Images in - * Arbitrary Dimensions", IEEE - Transactions on Pattern Analysis and - * Machine Intelligence, 25(2): 265-270, 2003. + * For algorithmic details see \cite maurer2003. * * \ingroup ImageFeatureExtraction * \ingroup ITKDistanceMap diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingBase.h b/Modules/Filtering/FastMarching/include/itkFastMarchingBase.h index 10db0748aea..be7bbbe16ef 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingBase.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingBase.h @@ -98,12 +98,7 @@ extern ITKFastMarching_EXPORT std::ostream & * \par Topology constraints: * Additional flexibility in this class includes the implementation of * topology constraints for image-based fast marching. Further details - * can be found in the paper - * - * NJ Tustison, BA Avants, MF Siqueira, JC Gee. "Topological Well- - * Composedness and Glamorous Glue: A Digital Gluing Algorithm for - * Topologically Constrained Front Propagation, IEEE Transactions on - * Image Processing, 20(6):1756-1761, June 2011. + * can be found in \cite tustison2011a. * * Essentially, one can constrain the propagating front(s) such that * they either: diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilter.h b/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilter.h index a811a5ee17a..e1a8a9a3024 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilter.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilter.h @@ -39,9 +39,7 @@ namespace itk * the value of the variables at the know points and on containing the * value of the variables at the trail points. * - * Implementation of this class is based on Chapter 11 of - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Second edition, 1999. + * Implementation of this class is based on \cite sethian1999b. * * For an alternative implementation, see itk::FastMarchingExtensionImageFilterBase. * diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilterBase.h b/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilterBase.h index 4615ddf027b..d27c33ccb18 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilterBase.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingExtensionImageFilterBase.h @@ -40,9 +40,7 @@ namespace itk * the value of the variables at the know points and on containing the * value of the variables at the trail points. * - * Implementation of this class is based on Chapter 11 of - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Second edition, 1999. + * Implementation of this class is based on \cite sethian1999b. * * For an alternative implementation, see itk::FastMarchingExtensionImageFilter. * diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilter.h b/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilter.h index d4b5974e8b8..1dcf2dec186 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilter.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilter.h @@ -73,9 +73,7 @@ extern ITKFastMarching_EXPORT std::ostream & * Fast Marching sweeps through N grid points in (N log N) steps to obtain * the arrival time value as the front propagates through the grid. * - * Implementation of this class is based on Chapter 8 of - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Second edition, 1999. + * Implementation of this class is based on \cite sethian1999a. * * This class is templated over the level set image type and the speed * image type. The initial front is specified by two containers: one diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilterBase.h b/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilterBase.h index 9c7bb66f09b..1cf2feb1ce1 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilterBase.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingImageFilterBase.h @@ -57,9 +57,7 @@ namespace itk * * Else the output information is copied from the input speed image. * - * Implementation of this class is based on Chapter 8 of - * "Level Set Methods and Fast Marching Methods", J.A. Sethian, - * Cambridge Press, Second edition, 1999. + * Implementation of this class is based on \cite sethian1999a. * * For an alternative implementation, see itk::FastMarchingImageFilter. * diff --git a/Modules/Filtering/FastMarching/include/itkFastMarchingQuadEdgeMeshFilterBase.h b/Modules/Filtering/FastMarching/include/itkFastMarchingQuadEdgeMeshFilterBase.h index 1cda5ba21be..494c97846ae 100644 --- a/Modules/Filtering/FastMarching/include/itkFastMarchingQuadEdgeMeshFilterBase.h +++ b/Modules/Filtering/FastMarching/include/itkFastMarchingQuadEdgeMeshFilterBase.h @@ -35,9 +35,7 @@ namespace itk If the speed function is constant and of value one, fast marching results is an approximate geodesic function from the initial alive points. - Implementation of this class is based on - "Fast Marching Methods on Triangulated Domains", Kimmel, R., and Sethian, J.A., - Proc. Nat. Acad. Sci., 95, pp. 8341-8435, 1998. + Implementation of this class is based on \cite kimmel1998. \ingroup ITKFastMarching */ diff --git a/Modules/Filtering/GPUAnisotropicSmoothing/include/itkGPUGradientNDAnisotropicDiffusionFunction.h b/Modules/Filtering/GPUAnisotropicSmoothing/include/itkGPUGradientNDAnisotropicDiffusionFunction.h index 4e45ba8cae7..80fa7829b84 100644 --- a/Modules/Filtering/GPUAnisotropicSmoothing/include/itkGPUGradientNDAnisotropicDiffusionFunction.h +++ b/Modules/Filtering/GPUAnisotropicSmoothing/include/itkGPUGradientNDAnisotropicDiffusionFunction.h @@ -29,7 +29,7 @@ namespace itk * \class GPUGradientNDAnisotropicDiffusionFunction * * This class implements an N-dimensional version of the classic Perona-Malik - * anisotropic diffusion equation for scalar-valued images on the GPU. See + * anisotropic diffusion equation \cite perona1990 for scalar-valued images on the GPU. See * itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion * framework and equation. * @@ -45,11 +45,6 @@ namespace itk * in the Perona-Malik paper below, but uses a more robust technique * for gradient magnitude estimation and has been generalized to N-dimensions. * - * \par References - * Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using - * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine - * Intelligence, vol. 12, pp. 629-639, 1990. - * * \ingroup ITKGPUAnisotropicSmoothing */ diff --git a/Modules/Filtering/ImageCompare/include/itkSTAPLEImageFilter.h b/Modules/Filtering/ImageCompare/include/itkSTAPLEImageFilter.h index 2dd1ad6b87e..081e27af474 100644 --- a/Modules/Filtering/ImageCompare/include/itkSTAPLEImageFilter.h +++ b/Modules/Filtering/ImageCompare/include/itkSTAPLEImageFilter.h @@ -38,12 +38,7 @@ namespace itk * and one that indicate probability of each pixel being in the object targeted * by the segmentation. * - * The STAPLE algorithm is described in - * - * S. Warfield, K. Zou, W. Wells, "Validation of image segmentation and expert - * quality with an expectation-maximization algorithm" in MICCAI 2002: Fifth - * International Conference on Medical Image Computing and Computer-Assisted - * Intervention, Springer-Verlag, Heidelberg, Germany, 2002, pp. 298-306 + * The STAPLE algorithm is described in \cite warfield2002. * * \par INPUTS * Input volumes to the STAPLE filter must be binary segmentations of an image, diff --git a/Modules/Filtering/ImageCompare/include/itkSimilarityIndexImageFilter.h b/Modules/Filtering/ImageCompare/include/itkSimilarityIndexImageFilter.h index 7955a8d9dfe..d16d045a266 100644 --- a/Modules/Filtering/ImageCompare/include/itkSimilarityIndexImageFilter.h +++ b/Modules/Filtering/ImageCompare/include/itkSimilarityIndexImageFilter.h @@ -39,11 +39,7 @@ namespace itk * The measure is derived from a reliability measure known as the kappa * statistic. \f$S\f$ is sensitive to both differences in size and in * location and have been in the literature for comparing two segmentation masks. - * For more information see: - * "Morphometric Analysis of White Matter Lesions in MR Images: Method and - * Validation", A. P. Zijdenbos, B. M. Dawant, R. A. Margolin and - * A. C. Palmer, IEEE Trans. on Medical Imaging, 13(4) pp 716-724,1994 - * + * For more information see \cite zijdenbos1994. * * This filter requires the largest possible region of the first image * and the same corresponding region in the second image. diff --git a/Modules/Filtering/ImageFeature/include/itkBilateralImageFilter.h b/Modules/Filtering/ImageFeature/include/itkBilateralImageFilter.h index 911f81fe14f..c6f3865a8f6 100644 --- a/Modules/Filtering/ImageFeature/include/itkBilateralImageFilter.h +++ b/Modules/Filtering/ImageFeature/include/itkBilateralImageFilter.h @@ -49,8 +49,7 @@ namespace itk * by an order of magnitude while maintaining edges. * * The bilateral operator used here was described by Tomasi and - * Manduchi (Bilateral Filtering for Gray and ColorImages. IEEE - * ICCV. 1998.) + * Manduchi in \cite tomasi1998. * * \sa GaussianOperator * \sa RecursiveGaussianImageFilter diff --git a/Modules/Filtering/ImageFeature/include/itkCannyEdgeDetectionImageFilter.h b/Modules/Filtering/ImageFeature/include/itkCannyEdgeDetectionImageFilter.h index 8a1ebb27355..21e726473a4 100644 --- a/Modules/Filtering/ImageFeature/include/itkCannyEdgeDetectionImageFilter.h +++ b/Modules/Filtering/ImageFeature/include/itkCannyEdgeDetectionImageFilter.h @@ -44,9 +44,7 @@ class ITK_TEMPLATE_EXPORT ListNode * \brief This filter is an implementation of a Canny edge detector for * scalar-valued images. * - * Based on John Canny's paper "A Computational Approach - * to Edge Detection"(IEEE Transactions on Pattern Analysis and Machine - * Intelligence, Vol. PAMI-8, No.6, November 1986), there are four major steps + * Based on John Canny's paper \cite canny1986 there are four major steps * used in the edge-detection scheme: * (1) Smooth the input image with Gaussian filter. * (2) Calculate the second directional derivatives of the smoothed image. diff --git a/Modules/Filtering/ImageFeature/include/itkDiscreteGaussianDerivativeImageFilter.h b/Modules/Filtering/ImageFeature/include/itkDiscreteGaussianDerivativeImageFilter.h index 609f52abef2..f0fbe1280f4 100644 --- a/Modules/Filtering/ImageFeature/include/itkDiscreteGaussianDerivativeImageFilter.h +++ b/Modules/Filtering/ImageFeature/include/itkDiscreteGaussianDerivativeImageFilter.h @@ -29,9 +29,8 @@ namespace itk * This filter calculates Gaussian derivative by separable convolution of an image * and a discrete Gaussian derivative operator (kernel). * - * The Gaussian operators used here were described by Tony Lindeberg (Discrete - * Scale-Space Theory and the Scale-Space Primal Sketch. Dissertation. Royal - * Institute of Technology, Stockholm, Sweden. May 1991.) + * The Gaussian operators used here were described by Tony Lindeberg + * \cite lindeberg1991. * * The variance or standard deviation (sigma) will be evaluated as pixel units * if SetUseImageSpacing is off (false) or as physical units if diff --git a/Modules/Filtering/ImageFeature/include/itkHessianToObjectnessMeasureImageFilter.h b/Modules/Filtering/ImageFeature/include/itkHessianToObjectnessMeasureImageFilter.h index 450947ae454..44e08c0bb34 100644 --- a/Modules/Filtering/ImageFeature/include/itkHessianToObjectnessMeasureImageFilter.h +++ b/Modules/Filtering/ImageFeature/include/itkHessianToObjectnessMeasureImageFilter.h @@ -27,7 +27,8 @@ namespace itk * \class HessianToObjectnessMeasureImageFilter * \brief A filter to enhance M-dimensional objects in N-dimensional images * - * The objectness measure is a generalization of Frangi's vesselness measure, + * The objectness measure is a generalization of Frangi's vesselness + * measure \cite frangi1998, * which is based on the analysis of the Hessian eigen system. The filter * can enhance blob-like structures (M=0), vessel-like structures (M=1), 2D * plate-like structures (M=2), hyper-plate-like structures (M=3) in N-dimensional @@ -36,13 +37,6 @@ namespace itk * pixels ) and produces an enhanced image. The Hessian input image can be produced * using itk::HessianRecursiveGaussianImageFilter. * - * - * \par References - * Frangi, AF, Niessen, WJ, Vincken, KL, & Viergever, MA (1998). Multiscale Vessel - * Enhancement Filtering. In Wells, WM, Colchester, A, & Delp, S, Editors, MICCAI '98 - * Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer - * Science, pages 130-137, Springer Verlag, 1998. - * * Additional information can be from in the Insight Journal: * https://doi.org/10.54294/urgadx * diff --git a/Modules/Filtering/ImageFeature/include/itkMaskFeaturePointSelectionFilter.h b/Modules/Filtering/ImageFeature/include/itkMaskFeaturePointSelectionFilter.h index 4ebafc8aa97..a38ba278495 100644 --- a/Modules/Filtering/ImageFeature/include/itkMaskFeaturePointSelectionFilter.h +++ b/Modules/Filtering/ImageFeature/include/itkMaskFeaturePointSelectionFilter.h @@ -42,9 +42,7 @@ namespace itk * This filter is intended to be used for initializing the process of * Physics-Based Non-Rigid Registration. It selects a fraction of non-masked * points with highest variance. Optionally, tensors are computed for each - * point and stored as pixel values. [ M. Bierling, Displacement estimation - * by hierarchical block matching, Proc. SPIE Vis. Comm. and Image Proc., - * vol. 1001, pp. 942-951, 1988. ]. + * point and stored as pixel values \cite bierling1988. * * The filter is templated over input image and mask and output pointset. * \author Andriy Kot, Center for Real-Time Computing, Old Dominion University, diff --git a/Modules/Filtering/ImageFilterBase/include/itkRecursiveSeparableImageFilter.h b/Modules/Filtering/ImageFilterBase/include/itkRecursiveSeparableImageFilter.h index e9508137d4d..829861c360b 100644 --- a/Modules/Filtering/ImageFilterBase/include/itkRecursiveSeparableImageFilter.h +++ b/Modules/Filtering/ImageFilterBase/include/itkRecursiveSeparableImageFilter.h @@ -33,17 +33,13 @@ namespace itk * independently. * * This class implements the recursive filtering - * method proposed by R.Deriche in IEEE-PAMI - * Vol.12, No.1, January 1990, pp 78-87. + * method described in \cite deriche1990. * * Details of the implementation are described in the technical report: * R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives", * INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz * - * Further improvements of the algorithm are described in: - * G. Farnebäck & C.-F. Westin, "Improving Deriche-style Recursive Gaussian - * Filters". J Math Imaging Vis 26, 293–299 (2006). - * https://doi.org/10.1007/s10851-006-8464-z + * Further improvements of the algorithm are described in \cite farneback2006. * * \ingroup ImageFilters * \ingroup ITKImageFilterBase diff --git a/Modules/Filtering/ImageGradient/include/itkVectorGradientMagnitudeImageFilter.h b/Modules/Filtering/ImageGradient/include/itkVectorGradientMagnitudeImageFilter.h index 4f41cf89cdf..d4f93f127b4 100644 --- a/Modules/Filtering/ImageGradient/include/itkVectorGradientMagnitudeImageFilter.h +++ b/Modules/Filtering/ImageGradient/include/itkVectorGradientMagnitudeImageFilter.h @@ -117,12 +117,8 @@ namespace itk * 3D solver is), so it cannot multithread for data other than 3D in * UsePrincipleComponents=On mode. * - * \par References + * For algorithmic details see \cite sapiro1996. * - * [1] G. Sapiro and D. Ringach, "Anisotropic Diffusion of Multivalued Images - * with Application to Color Filtering," IEEE Transactions on Image Processing, - * Vol 5, No. 11 pp. 1582-1586, 1996 - * \ingroup GradientFilters * * \sa Image diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineCenteredL2ResampleImageFilterBase.h b/Modules/Filtering/ImageGrid/include/itkBSplineCenteredL2ResampleImageFilterBase.h index 130ba08b3de..0d60385eb1c 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineCenteredL2ResampleImageFilterBase.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineCenteredL2ResampleImageFilterBase.h @@ -38,23 +38,9 @@ namespace itk * to up/down sample an image by a factor of 2. * * This class defines N-Dimension Centered L2 B-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * [4] P. Brigger, F. Miller, K. Illgner, M. Unser, "Centered Pyramids," - * IEEE Transactions on Image Processing, vol. 8, no. 9, pp. 1254-1264, - * September 1999. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993, \cite unser1993a, + * and \cite brigger1999. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: Spline order for the centered L2 pyramid must be between 0 and 4. * This code cannot be multi-threaded since the entire image must be diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineCenteredResampleImageFilterBase.h b/Modules/Filtering/ImageGrid/include/itkBSplineCenteredResampleImageFilterBase.h index c75fc7d9f5f..abd2582b3de 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineCenteredResampleImageFilterBase.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineCenteredResampleImageFilterBase.h @@ -40,20 +40,8 @@ namespace itk * \brief Evaluates the Centered B-Spline interpolation of an image. Spline order may be from 0 to 5. * * This class defines N-Dimension CenteredB-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993 and \cite unser1993a. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: Spline order must be between 0 and 5. * Spline order must be set before setting the image. diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineL2ResampleImageFilterBase.h b/Modules/Filtering/ImageGrid/include/itkBSplineL2ResampleImageFilterBase.h index 2d585060596..5f1b3f6493e 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineL2ResampleImageFilterBase.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineL2ResampleImageFilterBase.h @@ -39,23 +39,9 @@ namespace itk * to up/down sample an image by a factor of 2. * * This class defines N-Dimension B-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * [4] P. Brigger, F. Miller, K. Illgner, M. Unser, "Centered Pyramids," - * IEEE Transactions on Image Processing, vol. 8, no. 9, pp. 1254-1264, - * September 1999. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993, \cite + * unser1993a, and \cite brigger1999. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: Spline order for the centered l2 pyramid must be 0,1,3, or 5. * This code cannot be multi-threaded since the entire image must be diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineResampleImageFilterBase.h b/Modules/Filtering/ImageGrid/include/itkBSplineResampleImageFilterBase.h index 3e2a185c01a..ada5a20a4bf 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineResampleImageFilterBase.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineResampleImageFilterBase.h @@ -44,20 +44,8 @@ namespace itk * up/down sample an image by a factor of 2. * * This class defines N-Dimension B-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser199, \cite unser1993 and \cite unser1993a. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: Spline order for the l2 pyramid must be between 0 and 3. * This code cannot be multi-threaded since the entire image must be diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineScatteredDataPointSetToImageFilter.h b/Modules/Filtering/ImageGrid/include/itkBSplineScatteredDataPointSetToImageFilter.h index ebd678ed654..c63a4d601da 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineScatteredDataPointSetToImageFilter.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineScatteredDataPointSetToImageFilter.h @@ -112,14 +112,7 @@ namespace itk * https://doi.org/10.54294/0d55to * * - * \par REFERENCE - * S. Lee, G. Wolberg, and S. Y. Shin, "Scattered Data Interpolation - * with Multilevel B-Splines", IEEE Transactions on Visualization and - * Computer Graphics, 3(3):228-244, 1997. - * - * \par REFERENCE - * N.J. Tustison and J.C. Gee, "Generalized n-D C^k Scattered Data Approximation - * with Confidence Values", Proceedings of the MIAR conference, August 2006. + * For additional information see \cite lee1997 and \cite tustison2006. * * \ingroup ITKImageGrid * diff --git a/Modules/Filtering/ImageGrid/include/itkBSplineUpsampleImageFilter.h b/Modules/Filtering/ImageGrid/include/itkBSplineUpsampleImageFilter.h index fa77223620d..041a1dd8ae2 100644 --- a/Modules/Filtering/ImageGrid/include/itkBSplineUpsampleImageFilter.h +++ b/Modules/Filtering/ImageGrid/include/itkBSplineUpsampleImageFilter.h @@ -44,20 +44,8 @@ namespace itk * should work fine for most applications. * * This class defines N-Dimension B-Spline transformation. - * It is based on: - * [1] M. Unser, - * "Splines: A Perfect Fit for Signal and Image Processing," - * IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, - * November 1999. - * [2] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part I--Theory," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, - * February 1993. - * [3] M. Unser, A. Aldroubi and M. Eden, - * "B-Spline Signal Processing: Part II--Efficient Design and Applications," - * IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, - * February 1993. - * And code obtained from bigwww.epfl.ch by Philippe Thevenaz + * It is based on \cite unser1999, \cite unser1993 and \cite unser1993a. + * Code obtained from bigwww.epfl.ch by Philippe Thevenaz * * Limitations: This class requires specification of a resampler type which may * be one of: diff --git a/Modules/Filtering/ImageGrid/include/itkCoxDeBoorBSplineKernelFunction.h b/Modules/Filtering/ImageGrid/include/itkCoxDeBoorBSplineKernelFunction.h index f09b260b6bc..ff0c1d4a9cc 100644 --- a/Modules/Filtering/ImageGrid/include/itkCoxDeBoorBSplineKernelFunction.h +++ b/Modules/Filtering/ImageGrid/include/itkCoxDeBoorBSplineKernelFunction.h @@ -128,8 +128,7 @@ class ITK_TEMPLATE_EXPORT CoxDeBoorBSplineKernelFunction : public KernelFunction /** * Use the CoxDeBoor recursion relation to generate the piecewise * polynomials which compose the basis function. - * See, for example, L. Piegl, L. Tiller, "The NURBS Book," - * Springer 1997, p. 50. + * See, for example, \cite piegl1997 p. 50. */ PolynomialType CoxDeBoor(const unsigned short, const VectorType, const unsigned int, const unsigned int); diff --git a/Modules/Filtering/ImageIntensity/include/itkHistogramMatchingImageFilter.h b/Modules/Filtering/ImageIntensity/include/itkHistogramMatchingImageFilter.h index 42c876d6c24..969cd558010 100644 --- a/Modules/Filtering/ImageIntensity/include/itkHistogramMatchingImageFilter.h +++ b/Modules/Filtering/ImageIntensity/include/itkHistogramMatchingImageFilter.h @@ -60,10 +60,7 @@ namespace itk * type and that the input and output image type have the same number of * dimension and have scalar pixel types. * - * \par REFERENCE - * Laszlo G. Nyul, Jayaram K. Udupa, and Xuan Zhang, "New Variants of a Method - * of MRI Scale Standardization", IEEE Transactions on Medical Imaging, - * 19(2):143-150, 2000. + * For algorithmic details see \cite nyul2000. * * \ingroup IntensityImageFilters MultiThreaded * diff --git a/Modules/Filtering/ImageSources/include/itkGaborKernelFunction.h b/Modules/Filtering/ImageSources/include/itkGaborKernelFunction.h index e632b35149e..70e4fb0b597 100644 --- a/Modules/Filtering/ImageSources/include/itkGaborKernelFunction.h +++ b/Modules/Filtering/ImageSources/include/itkGaborKernelFunction.h @@ -31,13 +31,8 @@ namespace itk * various computer vision tasks such as texture segmentation, * motion analysis, and object recognition. It is essentially * a complex sinusoid enveloped within a Gaussian. - * See the discussion in - * - * Andreas Klein, Forester Lee, and Amir A. Amini, "Quantitative - * Coronary Angiography with Deformable Spline Models", IEEE-TMI - * 16(5):468-482, October 1997. - * - * for a basic discussion including additional references. + * See \cite klein1997 for a basic discussion + * including additional references. * * This implementation was contributed as a paper to the Insight Journal * https://doi.org/10.54294/dhogdz diff --git a/Modules/Filtering/ImageStatistics/include/itkAdaptiveHistogramEqualizationImageFilter.h b/Modules/Filtering/ImageStatistics/include/itkAdaptiveHistogramEqualizationImageFilter.h index e0907e97d9f..d211e9fbe1c 100644 --- a/Modules/Filtering/ImageStatistics/include/itkAdaptiveHistogramEqualizationImageFilter.h +++ b/Modules/Filtering/ImageStatistics/include/itkAdaptiveHistogramEqualizationImageFilter.h @@ -57,9 +57,7 @@ namespace itk * outside the image, and over-weights the valid part of the * neighborhood. * - * For detail description, reference "Adaptive Image Contrast - * Enhancement using Generalizations of Histogram Equalization." - * J.Alex Stark. IEEE Transactions on Image Processing, May 2000. + * For a detailed description see \cite stark2000. * * \ingroup ImageEnhancement * \ingroup ITKImageStatistics diff --git a/Modules/Filtering/LabelMap/include/itkBinaryFillholeImageFilter.h b/Modules/Filtering/LabelMap/include/itkBinaryFillholeImageFilter.h index bdcaaeb1709..58720efece6 100644 --- a/Modules/Filtering/LabelMap/include/itkBinaryFillholeImageFilter.h +++ b/Modules/Filtering/LabelMap/include/itkBinaryFillholeImageFilter.h @@ -30,8 +30,7 @@ namespace itk * BinaryFillholeImageFilter fills holes in a binary image. * * Geodesic morphology and the Fillhole algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/LabelMap/include/itkBinaryGrindPeakImageFilter.h b/Modules/Filtering/LabelMap/include/itkBinaryGrindPeakImageFilter.h index 947e69b760a..e502bcd5b0d 100644 --- a/Modules/Filtering/LabelMap/include/itkBinaryGrindPeakImageFilter.h +++ b/Modules/Filtering/LabelMap/include/itkBinaryGrindPeakImageFilter.h @@ -30,8 +30,7 @@ namespace itk * BinaryGrindPeakImageFilter grinds peaks in a grayscale image. * * Geodesic morphology and the grind peak algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByDilationImageFilter.h b/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByDilationImageFilter.h index 15540506c09..e6c7e8858e9 100644 --- a/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByDilationImageFilter.h +++ b/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByDilationImageFilter.h @@ -39,9 +39,7 @@ namespace itk * image, and is defined as the dilation of the marker image with * respect to the mask image iterated until stability. * - * Geodesic morphology is described in Chapter 6.2 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByErosionImageFilter.h b/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByErosionImageFilter.h index f65092e7e7d..2dcaed4a19c 100644 --- a/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByErosionImageFilter.h +++ b/Modules/Filtering/LabelMap/include/itkBinaryReconstructionByErosionImageFilter.h @@ -39,9 +39,7 @@ namespace itk * image, and is defined as the erosion of the marker image with * respect to the mask image iterated until stability. * - * Geodesic morphology is described in Chapter 6.2 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkBlackTopHatImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkBlackTopHatImageFilter.h index 5a5314edb3b..1b2daf68243 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkBlackTopHatImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkBlackTopHatImageFilter.h @@ -30,9 +30,7 @@ namespace itk * element. It subtracts the background from the input image. * The output of the filter transforms the black valleys into white peaks. * - * Top-hats are described in Chapter 4.5 of Pierre Soille's book - * "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Top-hats are described in \cite soille2004b. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkClosingByReconstructionImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkClosingByReconstructionImageFilter.h index 62eefd0c58a..f1d7f7ad974 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkClosingByReconstructionImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkClosingByReconstructionImageFilter.h @@ -38,9 +38,7 @@ namespace itk * by dilation using a marker image that is the original image for all * unaffected pixels. * - * Closing by reconstruction is described in Chapter 6.3.9 of Pierre - * Soille's book "Morphological Image Analysis: Principles and - * Applications", Second Edition, Springer, 2003. + * Closing by reconstruction is described in \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedClosingImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedClosingImageFilter.h index 130ba7b1b64..985408d3c25 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedClosingImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedClosingImageFilter.h @@ -32,9 +32,7 @@ namespace itk * interest. * * Geodesic morphology and the connected closing algorithm are - * described in Chapter 6 of Pierre Soille's book "Morphological Image - * Analysis: Principles and Applications", Second Edition, Springer, - * 2003. + * described in \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedOpeningImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedOpeningImageFilter.h index e87a8d4a2f1..dbcce345cf5 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedOpeningImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleConnectedOpeningImageFilter.h @@ -33,9 +33,7 @@ namespace itk * interest. * * Geodesic morphology and the connected opening algorithm is - * described in Chapter 6 of Pierre Soille's book "Morphological Image - * Analysis: Principles and Applications", Second Edition, Springer, - * 2003. + * described in \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleFillholeImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleFillholeImageFilter.h index 0850bf62cce..d749fba5ec6 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleFillholeImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleFillholeImageFilter.h @@ -44,8 +44,7 @@ namespace itk * pixel value in the input image. * * Geodesic morphology and the Fillhole algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \sa ReconstructionByErosionImageFilter * \sa MorphologyImageFilter, GrayscaleErodeImageFilter, GrayscaleFunctionErodeImageFilter, BinaryErodeImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicDilateImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicDilateImageFilter.h index e38644d1a0d..87fc12e85ff 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicDilateImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicDilateImageFilter.h @@ -42,9 +42,7 @@ namespace itk * The marker image must be less than or equal to the mask image * (on a pixel by pixel basis). * - * Geodesic morphology is described in Chapter 6 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * A noniterative version of this algorithm can be found in the * ReconstructionByDilationImageFilter. This noniterative solution is diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicErodeImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicErodeImageFilter.h index b046b092556..3d981da93ef 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicErodeImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGeodesicErodeImageFilter.h @@ -42,9 +42,7 @@ namespace itk * The marker image must be greater than or equal to the mask image * (on a pixel by pixel basis). * - * Geodesic morphology is described in Chapter 6 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * A noniterative version of this algorithm can be found in the * ReconstructionByErosionImageFilter. This noniterative solution is diff --git a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGrindPeakImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGrindPeakImageFilter.h index 6b66a333c54..ec1d2453a20 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGrindPeakImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkGrayscaleGrindPeakImageFilter.h @@ -58,8 +58,7 @@ namespace itk * somewhat superfluous but is provided as a convenience. * * Geodesic morphology and the Fillhole algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkHConcaveImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkHConcaveImageFilter.h index 65859323eeb..a610a149710 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkHConcaveImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkHConcaveImageFilter.h @@ -33,8 +33,7 @@ namespace itk * This filter uses the HMinimaImageFilter. * * Geodesic morphology and the H-Convex algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter, HMaximaImageFilter, * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkHConvexImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkHConvexImageFilter.h index b9b133ce57c..d35fdd2e6c3 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkHConvexImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkHConvexImageFilter.h @@ -33,8 +33,7 @@ namespace itk * This filter uses the HMaximaImageFilter. * * Geodesic morphology and the H-Convex algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter, HMinimaImageFilter * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkHMaximaImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkHMaximaImageFilter.h index 2b23e95c1b8..10dbf621a63 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkHMaximaImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkHMaximaImageFilter.h @@ -43,8 +43,7 @@ namespace itk * the input image minus the height parameter h. * * Geodesic morphology and the H-Maxima algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * The height parameter is set using SetHeight. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkHMinimaImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkHMinimaImageFilter.h index 767bf026ed3..5f098bdd2be 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkHMinimaImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkHMinimaImageFilter.h @@ -43,8 +43,7 @@ namespace itk * the input image plus the height parameter h. * * Geodesic morphology and the H-Minima algorithm is described in - * Chapter 6 of Pierre Soille's book "Morphological Image Analysis: - * Principles and Applications", Second Edition, Springer, 2003. + * \cite soille2004. * * \sa GrayscaleGeodesicDilateImageFilter, HMinimaImageFilter, HConvexImageFilter * \sa MorphologyImageFilter, GrayscaleDilateImageFilter, GrayscaleFunctionDilateImageFilter, BinaryDilateImageFilter diff --git a/Modules/Filtering/MathematicalMorphology/include/itkMaskedRankImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkMaskedRankImageFilter.h index 921fb86ad66..37bbb8ececa 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkMaskedRankImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkMaskedRankImageFilter.h @@ -38,7 +38,7 @@ namespace itk * cropped at the boundary, and is therefore smaller. * * This filter uses a recursive implementation - essentially the one - * by Huang 1979, I believe, to compute the rank, + * by Huang \cite huang1979, I believe, to compute the rank, * and is therefore usually a lot faster than the direct * implementation. The extensions to Huang are support for arbitrary * pixel types (using c++ maps) and arbitrary neighborhoods. I presume diff --git a/Modules/Filtering/MathematicalMorphology/include/itkMovingHistogramMorphologicalGradientImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkMovingHistogramMorphologicalGradientImageFilter.h index f4b2e95e240..8176c8b13b4 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkMovingHistogramMorphologicalGradientImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkMovingHistogramMorphologicalGradientImageFilter.h @@ -219,9 +219,7 @@ class ITK_TEMPLATE_EXPORT MorphologicalGradientHistogram : public VectorMo * \brief Morphological gradients enhance the variation of pixel * intensity in a given neighborhood. * - * Morphological gradient is described in Chapter 3.8.1 of Pierre - * Soille's book "Morphological Image Analysis: Principles and - * Applications", Second Edition, Springer, 2003. + * Morphological gradient is described in \cite soille2004a. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkOpeningByReconstructionImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkOpeningByReconstructionImageFilter.h index f7dc1d665c7..035cdbc80f8 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkOpeningByReconstructionImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkOpeningByReconstructionImageFilter.h @@ -41,9 +41,7 @@ namespace itk * by dilation using a marker image that is the original image for all * unaffected pixels. * - * Opening by reconstruction is described in Chapter 6.3.9 of Pierre - * Soille's book "Morphological Image Analysis: Principles and - * Applications", Second Edition, Springer, 2003. + * Opening by reconstruction is described in \cite soille2004. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/MathematicalMorphology/include/itkRankImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkRankImageFilter.h index a5f19e16f39..5d3b55296d3 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkRankImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkRankImageFilter.h @@ -38,7 +38,7 @@ namespace itk * cropped at the boundary, and is therefore smaller. * * This filter uses a recursive implementation - essentially the one - * by Huang 1979, I believe, to compute the rank, + * by Huang \cite huang1979, I believe, to compute the rank, * and is therefore usually a lot faster than the direct * implementation. The extensions to Huang are support for arbitrary * pixel types (using c++ maps) and arbitrary neighborhoods. I presume diff --git a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByDilationImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByDilationImageFilter.h index 28b25ba104e..c6dde57839d 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByDilationImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByDilationImageFilter.h @@ -35,19 +35,13 @@ namespace itk * The marker image must be less than or equal to the mask image * (on a pixel by pixel basis). * - * Geodesic morphology is described in Chapter 6.2 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * Algorithm implemented in this filter is based on algorithm described - * by Kevin Robinson and Paul F. Whelan in "Efficient Morphological - * Reconstruction: A Downhill Filter", Pattern Recognition Letters, Volume - * 25, Issue 15, November 2004, Pages 1759-1767. + * in \cite robinson2004. * * The algorithm, a description of the transform and some applications - * can be found in "Morphological Grayscale Reconstruction in Image Analysis: - * Applications and Efficient Algorithms", Luc Vincent, IEEE Transactions on - * image processing, Vol. 2, April 1993. + * can be found in \cite vincent1993. * * \author Richard Beare. Department of Medicine, Monash University, * Melbourne, Australia. diff --git a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByErosionImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByErosionImageFilter.h index 2296b83b2ed..6a667c89dcd 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByErosionImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionByErosionImageFilter.h @@ -34,19 +34,13 @@ namespace itk * The marker image must be less than or equal to the mask image * (on a pixel by pixel basis). * - * Geodesic morphology is described in Chapter 6.2 of Pierre Soille's - * book "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Geodesic morphology is described in \cite soille2004. * * Algorithm implemented in this filter is based on algorithm described - * by Kevin Robinson and Paul F. Whelan in "Efficient Morphological - * Reconstruction: A Downhill Filter", Pattern Recognition Letters, Volume - * 25, Issue 15, November 2004, Pages 1759-1767. + * in \cite robinson2004. * * The algorithm, a description of the transform and some applications - * can be found in "Morphological Grayscale Reconstruction in Image Analysis: - * Applications and Efficient Algorithms", Luc Vincent, IEEE Transactions on - * image processing, Vol. 2, April 1993. + * can be found in \cite vincent1993. * * \author Richard Beare. Department of Medicine, Monash University, * Melbourne, Australia. diff --git a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionImageFilter.h index 84db113495c..7568d12f7c7 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkReconstructionImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkReconstructionImageFilter.h @@ -39,9 +39,7 @@ namespace itk * * This filter uses Luc Vincent's algorithm, which employs raster and * antiraster propagation steps followed by a FIFO based propagation - * step. "Morphological grayscale reconstruction in image analysis - - * applications and efficient algorithms" -- IEEE Transactions on - * Image processing, Vol 2, No 2, pp 176-201, April 1993 + * step \cite vincent1993. * * \author Richard Beare. Department of Medicine, Monash University, * Melbourne, Australia. diff --git a/Modules/Filtering/MathematicalMorphology/include/itkWhiteTopHatImageFilter.h b/Modules/Filtering/MathematicalMorphology/include/itkWhiteTopHatImageFilter.h index 66e12b8aed5..7526a65d932 100644 --- a/Modules/Filtering/MathematicalMorphology/include/itkWhiteTopHatImageFilter.h +++ b/Modules/Filtering/MathematicalMorphology/include/itkWhiteTopHatImageFilter.h @@ -28,9 +28,7 @@ namespace itk /** \class WhiteTopHatImageFilter * \brief White top hat extracts local maxima that are larger than the structuring element * - * Top-hats are described in Chapter 4.5 of Pierre Soille's book - * "Morphological Image Analysis: Principles and Applications", - * Second Edition, Springer, 2003. + * Top-hats are described in \cite soille2004b. * * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France. * diff --git a/Modules/Filtering/Path/include/itkContourExtractor2DImageFilter.h b/Modules/Filtering/Path/include/itkContourExtractor2DImageFilter.h index 8f089fd3939..f625c6b864f 100644 --- a/Modules/Filtering/Path/include/itkContourExtractor2DImageFilter.h +++ b/Modules/Filtering/Path/include/itkContourExtractor2DImageFilter.h @@ -44,9 +44,7 @@ namespace itk * sub-pixel resolution for the output contours. * * The marching squares algorithm is a special case of the marching cubes - * algorithm (Lorensen, William and Harvey E. Cline. Marching Cubes: A High - * Resolution 3D Surface Construction Algorithm. Computer Graphics (SIGGRAPH 87 - * Proceedings) 21(4) July 1987, p. 163-170). A simple explanation is available + * algorithm \cite lorensen1987. A simple explanation is available * here: http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html * * There is an ambiguous case in the marching squares algorithm: if a given diff --git a/Modules/Filtering/Path/include/itkHilbertPath.h b/Modules/Filtering/Path/include/itkHilbertPath.h index d8e2e08bbbd..a055e446302 100644 --- a/Modules/Filtering/Path/include/itkHilbertPath.h +++ b/Modules/Filtering/Path/include/itkHilbertPath.h @@ -40,9 +40,7 @@ namespace itk * image onto a single array. More properties and visualizations can be * found in various places on the web. * - * The implementation is based on - * Chris Hamilton, "Compact Hilbert Indices", Technical Report CS-2006-07, - * July 24, 2006. + * The implementation is based on \cite hamilton2006 * and a direct porting of the Aldo Cortesi's python code found at * https://github.com/cortesi/scurve * diff --git a/Modules/Filtering/QuadEdgeMeshFiltering/include/itkNormalQuadEdgeMeshFilter.h b/Modules/Filtering/QuadEdgeMeshFiltering/include/itkNormalQuadEdgeMeshFilter.h index 0c35a242ad6..126943c349b 100644 --- a/Modules/Filtering/QuadEdgeMeshFiltering/include/itkNormalQuadEdgeMeshFilter.h +++ b/Modules/Filtering/QuadEdgeMeshFiltering/include/itkNormalQuadEdgeMeshFilter.h @@ -64,19 +64,10 @@ operator<<(std::ostream & out, const NormalQuadEdgeMeshFilterEnums::Weight value *
  • AREA \f$ \omega_i = Area(t_i)\f$ [3]
  • * * - * These weights are defined in the literature: - * + * These weights are defined in the literature \cite gouraud1971, + * \cite jin2005 and \cite thurmer1998. * - * \note By default the weight is set to the TURMER weight. + * \note By default the weight is set to the THURMER weight. * * \todo Fix run-time issues regarding the difference between the Traits of * TInputMesh and the one of TOutputMesh. Right now, it only works if diff --git a/Modules/Filtering/Smoothing/include/itkDiscreteGaussianImageFilter.h b/Modules/Filtering/Smoothing/include/itkDiscreteGaussianImageFilter.h index 193bffe558e..d7b9b5f198d 100644 --- a/Modules/Filtering/Smoothing/include/itkDiscreteGaussianImageFilter.h +++ b/Modules/Filtering/Smoothing/include/itkDiscreteGaussianImageFilter.h @@ -31,11 +31,9 @@ namespace itk * This filter performs Gaussian blurring by separable convolution of an image * and a discrete Gaussian operator (kernel). * - * The Gaussian operator used here was described by Tony Lindeberg (Discrete - * Scale-Space Theory and the Scale-Space Primal Sketch. Dissertation. Royal - * Institute of Technology, Stockholm, Sweden. May 1991.) The Gaussian kernel - * used here was designed so that smoothing and derivative operations commute - * after discretization. + * The Gaussian operator used here was described by Tony Lindeberg in + * \cite lindeberg1991. The Gaussian kernel used here was designed so + * that smoothing and derivative operations commute after discretization. * * The variance or standard deviation (sigma) will be evaluated as pixel units * if SetUseImageSpacing is off (false) or as physical units if diff --git a/Modules/Filtering/Smoothing/include/itkRecursiveGaussianImageFilter.h b/Modules/Filtering/Smoothing/include/itkRecursiveGaussianImageFilter.h index 22f3266bfcf..16f6b695e92 100644 --- a/Modules/Filtering/Smoothing/include/itkRecursiveGaussianImageFilter.h +++ b/Modules/Filtering/Smoothing/include/itkRecursiveGaussianImageFilter.h @@ -69,18 +69,13 @@ static constexpr GaussianOrderEnum SecondOrder = GaussianOrderEnum::SecondOrder; * RecursiveGaussianImageFilter is the base class for recursive filters that * approximate convolution with the Gaussian kernel. * This class implements the recursive filtering - * method proposed by R.Deriche in IEEE-PAMI - * Vol.12, No.1, January 1990, pp 78-87, - * "Fast Algorithms for Low-Level Vision" + * method proposed by R.Deriche in \cite deriche1990. * * Details of the implementation are described in the technical report: * R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives", * INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz * - * Further improvements of the algorithm are described in: - * G. Farnebäck & C.-F. Westin, "Improving Deriche-style Recursive Gaussian - * Filters". J Math Imaging Vis 26, 293–299 (2006). - * https://doi.org/10.1007/s10851-006-8464-z + * Further improvements of the algorithm are described in \cite farneback2006. * * As compared to itk::DiscreteGaussianImageFilter, this filter tends * to be faster for large kernels, and it can take the derivative diff --git a/Modules/Filtering/Thresholding/include/itkHuangThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkHuangThresholdCalculator.h index b7d319b40dd..de2c03e4cee 100644 --- a/Modules/Filtering/Thresholding/include/itkHuangThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkHuangThresholdCalculator.h @@ -29,10 +29,8 @@ namespace itk * \brief Computes the Huang's threshold for an image. * * This calculator computes the Huang's fuzzy threshold which separates an image - * into foreground and background components. Uses Shannon's entropy + * into foreground and background components \cite huang1995. Uses Shannon's entropy * function (one can also use Yager's entropy function) - * Huang L.-K. and Wang M.-J.J. (1995) "Image Thresholding by Minimizing - * the Measures of Fuzziness" Pattern Recognition, 28(1): 41-51 * Reimplemented (to handle 16-bit efficiently) by Johannes Schindelin Jan 31, 2011 * * This class is templated over the input histogram type. diff --git a/Modules/Filtering/Thresholding/include/itkIntermodesThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkIntermodesThresholdCalculator.h index e818eebe003..cac3a0c8886 100644 --- a/Modules/Filtering/Thresholding/include/itkIntermodesThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkIntermodesThresholdCalculator.h @@ -26,11 +26,8 @@ namespace itk /** * \class IntermodesThresholdCalculator - * \brief Computes the Intermodes's threshold for an image. + * \brief Computes the Intermodes's threshold for an image \cite prewitt1966. * - * J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images," in - * Annals of the New York Academy of Sciences, vol. 128, pp. 1035-1053, 1966. - * * * Assumes a bimodal histogram. The histogram needs is smoothed (using a * running average of size 3, iteratively) until there are only two local maxima. * j and k diff --git a/Modules/Filtering/Thresholding/include/itkIsoDataThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkIsoDataThresholdCalculator.h index ba2eee87380..60a291cb94f 100644 --- a/Modules/Filtering/Thresholding/include/itkIsoDataThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkIsoDataThresholdCalculator.h @@ -28,9 +28,7 @@ namespace itk * \class IsoDataThresholdCalculator * \brief Computes the IsoData threshold for an image. Aka intermeans * - * Iterative procedure based on the isodata algorithm [T.W. Ridler, S. Calvard, Picture - * thresholding using an iterative selection method, IEEE Trans. System, Man and - * Cybernetics, SMC-8 (1978) 630-632.] + * Iterative procedure based on the isodata algorithm \cite ridler1978. * The procedure divides the image into objects and background by taking an initial threshold, * then the averages of the pixels at or below the threshold and pixels above are computed. * The averages of those two values are computed, the threshold is incremented and the diff --git a/Modules/Filtering/Thresholding/include/itkKittlerIllingworthThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkKittlerIllingworthThresholdCalculator.h index 8ad428402b9..ba10efbad81 100644 --- a/Modules/Filtering/Thresholding/include/itkKittlerIllingworthThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkKittlerIllingworthThresholdCalculator.h @@ -28,9 +28,8 @@ namespace itk * \class KittlerIllingworthThresholdCalculator * \brief Computes the KittlerIllingworth's threshold for an image. * - * Kittler and J. Illingworth, "Minimum error thresholding," Pattern Recognition, vol. 19, pp. 41-47, 1986. - * C. A. Glasbey, "An analysis of histogram-based thresholding algorithms," CVGIP: Graphical Models and Image - * Processing, vol. 55, pp. 532-537, 1993. Original Matlab code Copyright (C) 2004 Antti Niemisto See + * For algorithm description see \cite kittler1986 and \cite glasbey1993. + * Original Matlab code Copyright (C) 2004 Antti Niemisto. See * https://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation and the original Matlab code. * * This class is templated over the input histogram type. diff --git a/Modules/Filtering/Thresholding/include/itkLiThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkLiThresholdCalculator.h index b994ea337e3..3788652de7c 100644 --- a/Modules/Filtering/Thresholding/include/itkLiThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkLiThresholdCalculator.h @@ -29,15 +29,9 @@ namespace itk * \brief Computes the Li threshold for an image. Aka intermeans * * Implements Li's Minimum Cross Entropy thresholding method - * This implementation is based on the iterative version (Ref. 2) of the algorithm. - * 1) Li C.H. and Lee C.K. (1993) "Minimum Cross Entropy Thresholding" - * Pattern Recognition, 26(4): 617-625 - * 2) Li C.H. and Tam P.K.S. (1998) "An Iterative Algorithm for Minimum - * Cross Entropy Thresholding"Pattern Recognition Letters, 18(8): 771-776 - * 3) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding - * Techniques and Quantitative Performance Evaluation" Journal of - * Electronic Imaging, 13(1): 146-165 - * https://citeseer.ist.psu.edu/sezgin04survey.html + * This implementation is based on the iterative version \cite li1998 + * of the algorithm. For additional information see \cite li1993, + * \cite li1998 and \cite sezgin2004. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Filtering/Thresholding/include/itkMaximumEntropyThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkMaximumEntropyThresholdCalculator.h index 26f7e4b4001..a46e9e382b4 100644 --- a/Modules/Filtering/Thresholding/include/itkMaximumEntropyThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkMaximumEntropyThresholdCalculator.h @@ -29,11 +29,7 @@ namespace itk * \brief Computes the MaximumEntropy's threshold for an image. * * Implements Kapur-Sahoo-Wong (Maximum Entropy) thresholding method - * Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for - * Gray-Level Picture Thresholding Using the Entropy of the Histogram" - * Graphical Models and Image Processing, 29(3): 273-285 - * M. Emre Celebi - * 06.15.2007 + * \cite kapur1985. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Filtering/Thresholding/include/itkMomentsThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkMomentsThresholdCalculator.h index b09fad89fb3..4e48c82e015 100644 --- a/Modules/Filtering/Thresholding/include/itkMomentsThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkMomentsThresholdCalculator.h @@ -28,8 +28,7 @@ namespace itk * \class MomentsThresholdCalculator * \brief Computes the Moments's threshold for an image. * - * W. Tsai, "Moment-preserving thresholding: a new approach," Computer Vision, - * Graphics, and Image Processing, vol. 29, pp. 377-393, 1985. + * For algorithmic details see \cite tsai1985. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsCalculator.h b/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsCalculator.h index d7f6e1a7ab8..9c9e4be7a1a 100644 --- a/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsCalculator.h @@ -35,8 +35,8 @@ namespace itk * maximized. * * This calculator also includes an option to use the valley emphasis algorithm from - * H.F. Ng, "Automatic thresholding for defect detection", Pattern Recognition Letters, (27): 1644-1649, 2006. - * The valley emphasis algorithm is particularly effective when the object to be thresholded is small. + * \cite ng2006. The valley emphasis algorithm is particularly + * effective when the object to be thresholded is small. * See the following tests for examples: * itkOtsuMultipleThresholdsImageFilterTest3 and itkOtsuMultipleThresholdsImageFilterTest4 * To use this algorithm, simple call the setter: SetValleyEmphasis(true) diff --git a/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsImageFilter.h b/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsImageFilter.h index 4bc4165bf29..81a5b7a0b2c 100644 --- a/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsImageFilter.h +++ b/Modules/Filtering/Thresholding/include/itkOtsuMultipleThresholdsImageFilter.h @@ -39,7 +39,7 @@ namespace itk * for the ThresholdLabelerImageFilter. * * This filter also includes an option to use the valley emphasis algorithm from - * H.F. Ng, "Automatic thresholding for defect detection", Pattern Recognition Letters, (27): 1644-1649, 2006. + * \cite ng2006. * The valley emphasis algorithm is particularly effective when the object to be thresholded is small. * See the following tests for examples: * itkOtsuMultipleThresholdsImageFilterTest3 and itkOtsuMultipleThresholdsImageFilterTest4 diff --git a/Modules/Filtering/Thresholding/include/itkRenyiEntropyThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkRenyiEntropyThresholdCalculator.h index 7425ba6747a..910f0d28981 100644 --- a/Modules/Filtering/Thresholding/include/itkRenyiEntropyThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkRenyiEntropyThresholdCalculator.h @@ -28,11 +28,7 @@ namespace itk * \class RenyiEntropyThresholdCalculator * \brief Computes the RenyiEntropy's threshold for an image. * - * Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for - * Gray-Level Picture Thresholding Using the Entropy of the Histogram" - * Graphical Models and Image Processing, 29(3): 273-285 - * M. Emre Celebi - * 06.15.2007 + * For algorithmic details see \cite kapur1985. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Filtering/Thresholding/include/itkShanbhagThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkShanbhagThresholdCalculator.h index 4c374e49af9..8963ce4ab49 100644 --- a/Modules/Filtering/Thresholding/include/itkShanbhagThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkShanbhagThresholdCalculator.h @@ -28,8 +28,7 @@ namespace itk * \class ShanbhagThresholdCalculator * \brief Computes the Shanbhag threshold for an image. Aka intermeans * - * Shanhbag A.G. (1994) "Utilization of Information Measure as a Means of - * Image Thresholding" Graphical Models and Image Processing, 56(5): 414-419 + * For algorithmic details see \cite shanbhag1994. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Filtering/Thresholding/include/itkYenThresholdCalculator.h b/Modules/Filtering/Thresholding/include/itkYenThresholdCalculator.h index bed0ec39cf4..76950226d18 100644 --- a/Modules/Filtering/Thresholding/include/itkYenThresholdCalculator.h +++ b/Modules/Filtering/Thresholding/include/itkYenThresholdCalculator.h @@ -28,17 +28,7 @@ namespace itk * \class YenThresholdCalculator * \brief Computes the Yen's threshold for an image. * - * Implements Yen thresholding method - * 1) Yen J.C., Chang F.J., and Chang S. (1995) "A New Criterion - * for Automatic Multilevel Thresholding" IEEE Trans. on Image - * Processing, 4(3): 370-378 - * 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding - * Techniques and Quantitative Performance Evaluation" Journal of - * Electronic Imaging, 13(1): 146-165 - * https://citeseer.ist.psu.edu/sezgin04survey.html - * - * M. Emre Celebi - * 06.15.2007 + * Implements Yen thresholding method \cite yen1995, \cite sezgin2004. * * This class is templated over the input histogram type. * \warning This calculator assumes that the input histogram has only one dimension. diff --git a/Modules/Registration/Common/include/itkBlockMatchingImageFilter.h b/Modules/Registration/Common/include/itkBlockMatchingImageFilter.h index f8d145d2f12..ca27824a54a 100644 --- a/Modules/Registration/Common/include/itkBlockMatchingImageFilter.h +++ b/Modules/Registration/Common/include/itkBlockMatchingImageFilter.h @@ -53,9 +53,7 @@ namespace itk * * This filter is intended to be used in the process of Physics-Based * Non-Rigid Registration. It computes displacement for selected points based - * on similarity [M. Bierling, Displacement estimation by hierarchical block - * matching, Proc. SPIE Vis. Comm. and Image Proc., vol. 1001, pp. 942-951, - * 1988.]. + * on similarity as described in \cite bierling1988. * * \author Andriy Kot, Center for Real-Time Computing, Old Dominion University, * Norfolk, VA diff --git a/Modules/Registration/Common/include/itkEuclideanDistancePointMetric.h b/Modules/Registration/Common/include/itkEuclideanDistancePointMetric.h index b7dc6bda4be..7696f8264e9 100644 --- a/Modules/Registration/Common/include/itkEuclideanDistancePointMetric.h +++ b/Modules/Registration/Common/include/itkEuclideanDistancePointMetric.h @@ -35,8 +35,7 @@ namespace itk * If the number of points is high, the possibility of setting a distance map * should improve the speed of the closest point computation. * - * Reference: "A Method for Registration of 3-D Shapes", - * IEEE PAMI, Vol 14, No. 2, February 1992 + * For more details see \cite besl1992. * * \ingroup RegistrationMetrics * \ingroup ITKRegistrationCommon diff --git a/Modules/Registration/Common/include/itkGradientDifferenceImageToImageMetric.h b/Modules/Registration/Common/include/itkGradientDifferenceImageToImageMetric.h index 92de8af1702..0426ed0c58d 100644 --- a/Modules/Registration/Common/include/itkGradientDifferenceImageToImageMetric.h +++ b/Modules/Registration/Common/include/itkGradientDifferenceImageToImageMetric.h @@ -46,10 +46,7 @@ namespace itk * on it. Values at these non-grid position of the Fixed image are * interpolated using a user-selected Interpolator. * - * Implementation of this class is based on: - * Hipwell, J. H., et. al. (2003), "Intensity-Based 2-D-3D Registration of - * Cerebral Angiograms,", IEEE Transactions on Medical Imaging, - * 22(11):1417-1426. + * Implementation of this class is based on \cite hipwell2003. * * \ingroup RegistrationMetrics * \ingroup ITKRegistrationCommon diff --git a/Modules/Registration/Common/include/itkKullbackLeiblerCompareHistogramImageToImageMetric.h b/Modules/Registration/Common/include/itkKullbackLeiblerCompareHistogramImageToImageMetric.h index db93b2a7ffb..7f1edbca84c 100644 --- a/Modules/Registration/Common/include/itkKullbackLeiblerCompareHistogramImageToImageMetric.h +++ b/Modules/Registration/Common/include/itkKullbackLeiblerCompareHistogramImageToImageMetric.h @@ -32,13 +32,7 @@ namespace itk * This class computers the KL-metric by comparing the histograms * of the testing histogram formed by the overlap of intensities in * the images, to a training histogram. It is based on the - * following paper: - * - * Albert C.S. Chung, William M. Wells III, Alexander Norbash, and - * W. Eric L. Grimson, Multi-modal Image Registration by - * Minimising Kullback-Leibler Distance, In Medical Image Computing - * and Computer-Assisted Intervention - MICCAI 2002, LNCS 2489, - * pp. 525 - 532. + * algorithm described in \cite chung2002. * * The metric is given by KL(P_test||P_train) * = Sum_{i1,i2} P_test(i1,i2) std::log(P_test(i1,i2)/P_train(i1,i2)) diff --git a/Modules/Registration/Common/include/itkLandmarkBasedTransformInitializer.h b/Modules/Registration/Common/include/itkLandmarkBasedTransformInitializer.h index 1c7ad80566a..035139a649e 100644 --- a/Modules/Registration/Common/include/itkLandmarkBasedTransformInitializer.h +++ b/Modules/Registration/Common/include/itkLandmarkBasedTransformInitializer.h @@ -67,16 +67,12 @@ namespace itk * The class is based in part on Hybrid/vtkLandmarkTransform originally * implemented in python by David G. Gobbi. * - * The solution is based on - * Berthold K. P. Horn (1987), "Closed-form solution of absolute orientation - * using unit quaternions," + * The solution is based on \cite horn1987. * https://people.csail.mit.edu/bkph/papers/Absolute_Orientation.pdf * * The Affine Transform initializer is based on an algorithm by H Spaeth, - * and is described in the Insight Journal Article - * "Affine Transformation for Landmark Based Registration Initializer - * in ITK" by Kim E.Y., Johnson H., Williams N. - * available at https://midasjournal.org/browse/publication/825 + * and is described in \cite kim2011, available at + * https://doi.org/10.54294/fge470 * * \ingroup ITKRegistrationCommon * diff --git a/Modules/Registration/Common/include/itkMattesMutualInformationImageToImageMetric.h b/Modules/Registration/Common/include/itkMattesMutualInformationImageToImageMetric.h index 24b219fd3ad..e49a8752fbc 100644 --- a/Modules/Registration/Common/include/itkMattesMutualInformationImageToImageMetric.h +++ b/Modules/Registration/Common/include/itkMattesMutualInformationImageToImageMetric.h @@ -60,8 +60,8 @@ namespace itk * both the mutual information and its derivatives with respect to the * transform parameters. * - * The calculations are based on the method of Mattes et al [1,2] - * where the probability density distribution are estimated using + * The calculations are based on the method of Mattes et al \cite + * mattes2001, \cite mattes2003 where the probability density distribution are estimated using * Parzen histograms. Since the fixed image PDF does not contribute * to the derivatives, it does not need to be smooth. Hence, * a zero order (box car) BSpline kernel is used @@ -93,19 +93,6 @@ namespace itk * Notes: * 1. This class returns the negative mutual information value. * - * References: - * [1] "Nonrigid multimodality image registration" - * D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank - * Medical Imaging 2001: Image Processing, 2001, pp. 1609-1620. - * [2] "PET-CT Image Registration in the Chest Using Free-form Deformations" - * D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank - * IEEE Transactions in Medical Imaging. Vol.22, No.1, - January 2003. pp.120-128. - * [3] "Optimization of Mutual Information for MultiResolution Image - * Registration" - * P. Thevenaz and M. Unser - * IEEE Transactions in Image Processing, 9(12) December 2000. - * * \ingroup RegistrationMetrics * \ingroup ITKRegistrationCommon * diff --git a/Modules/Registration/Common/include/itkMutualInformationImageToImageMetric.h b/Modules/Registration/Common/include/itkMutualInformationImageToImageMetric.h index 5cb16ca95dd..50f55b7549f 100644 --- a/Modules/Registration/Common/include/itkMutualInformationImageToImageMetric.h +++ b/Modules/Registration/Common/include/itkMutualInformationImageToImageMetric.h @@ -74,10 +74,7 @@ namespace itk * The variance can be set via methods SetFixedImageStandardDeviation() * and SetMovingImageStandardDeviation(). * - * Implementation of this class is based on: - * Viola, P. and Wells III, W. (1997). - * "Alignment by Maximization of Mutual Information" - * International Journal of Computer Vision, 24(2):137-154 + * Implementation of this class is based on \cite viola1997. * * \sa KernelFunctionBase * \sa GaussianKernelFunction diff --git a/Modules/Registration/Common/include/itkPointSetToSpatialObjectDemonsRegistration.h b/Modules/Registration/Common/include/itkPointSetToSpatialObjectDemonsRegistration.h index c53637c6c0a..4386c233ba0 100644 --- a/Modules/Registration/Common/include/itkPointSetToSpatialObjectDemonsRegistration.h +++ b/Modules/Registration/Common/include/itkPointSetToSpatialObjectDemonsRegistration.h @@ -29,7 +29,7 @@ namespace itk * \brief Implementation of Demons Registration between a PointSet and a SpatialObject * * The simplest case of Demons registration suggested by P. Thirion in his - * paper[1] is defined by a Model and Scene. The Model should be able to + * paper \cite thirion1998 is defined by a Model and Scene. The Model should be able to * respond to the queries of whether a point is inside or outside of the object * of interest, while the Scene provides a number of points (the Demons) with * vector indicating the direction of inside-outside of the equivalent object @@ -43,9 +43,6 @@ namespace itk * update the transform. Such method will be specific for the particular type of * transform used. * - * [1] J-P. Thirion "Image matching as a Diffusion Process: and Analogy with - * Maxwell's Demons", Medical Image Analysis, 1998, Vol. 2, No. 3, pp 243-260. - * * \ingroup RegistrationFilters * \ingroup ITKRegistrationCommon */ diff --git a/Modules/Registration/FEM/include/itkPhysicsBasedNonRigidRegistrationMethod.h b/Modules/Registration/FEM/include/itkPhysicsBasedNonRigidRegistrationMethod.h index 8aedfb8a80d..113c741c4c0 100644 --- a/Modules/Registration/FEM/include/itkPhysicsBasedNonRigidRegistrationMethod.h +++ b/Modules/Registration/FEM/include/itkPhysicsBasedNonRigidRegistrationMethod.h @@ -43,9 +43,7 @@ namespace fem * Based Non-Rigid Registration. It computes feature points from the * moving image, then computes displacements of the feature points in the * fixed image via block-matching, then computes deformation field of a - * whole image using linear elastic model[ M. Bierling, Displacement - * estimation by hierarchical block matching, Proc. SPIE Vis. Comm. and - * Image Proc., vol. 1001, pp. 942-951, 1988. ]. + * whole image using linear elastic model \cite bierling1988. * * The filter is templated over fixed image, moving image, mask, mesh and * deformation field image. diff --git a/Modules/Registration/Metricsv4/include/itkANTSNeighborhoodCorrelationImageToImageMetricv4.h b/Modules/Registration/Metricsv4/include/itkANTSNeighborhoodCorrelationImageToImageMetricv4.h index 11b304c0756..9c692b5b920 100644 --- a/Modules/Registration/Metricsv4/include/itkANTSNeighborhoodCorrelationImageToImageMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkANTSNeighborhoodCorrelationImageToImageMetricv4.h @@ -30,13 +30,7 @@ namespace itk * for each voxel between two images, with speed optimizations for dense * registration. * - * Please cite this reference for more details: - * - * Brian B. Avants, Nicholas J. Tustison, Gang Song, Philip A. Cook, - * Arno Klein, James C. Gee, A reproducible evaluation of ANTs similarity metric - * performance in brain image registration, NeuroImage, Volume 54, Issue 3, - * 1 February 2011, Pages 2033-2044, ISSN 1053-8119, - * DOI: 10.1016/j.neuroimage.2010.09.025. + * Please see \cite avants2011 for more details. * * Around each voxel, the neighborhood is defined as a N-Dimensional * rectangle centered at the voxel. The size of the rectangle is 2*radius+1. diff --git a/Modules/Registration/Metricsv4/include/itkEuclideanDistancePointSetToPointSetMetricv4.h b/Modules/Registration/Metricsv4/include/itkEuclideanDistancePointSetToPointSetMetricv4.h index 99d1e8c91e0..9e8f0ce2fd5 100644 --- a/Modules/Registration/Metricsv4/include/itkEuclideanDistancePointSetToPointSetMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkEuclideanDistancePointSetToPointSetMetricv4.h @@ -32,9 +32,7 @@ namespace itk * We only have to handle the individual point case as the parent * class handles the aggregation. * - * Reference: - * PJ Besl and ND McKay, "A Method for Registration of 3-D Shapes", - * IEEE PAMI, Vol 14, No. 2, February 1992 + * For complete details see \cite besl1992. * * \ingroup ITKMetricsv4 */ diff --git a/Modules/Registration/Metricsv4/include/itkExpectationBasedPointSetToPointSetMetricv4.h b/Modules/Registration/Metricsv4/include/itkExpectationBasedPointSetToPointSetMetricv4.h index 01d9050aa7c..999bd871404 100644 --- a/Modules/Registration/Metricsv4/include/itkExpectationBasedPointSetToPointSetMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkExpectationBasedPointSetToPointSetMetricv4.h @@ -31,12 +31,8 @@ namespace itk * This information-theoretic point set measure models each point set * as a sum of Gaussians. To speed up computation, evaluation of the local * value/derivative is done in a user-specified neighborhood using the k-d - * tree constructed in the superclass. - * - * Reference: - * Pluta J, Avants BB, Glynn S, Awate S, Gee JC, Detre JA, - * "Appearance and incomplete label matching for diffeomorphic template - * "based hippocampus segmentation", Hippocampus, 2009 Jun; 19(6):565-71. + * tree constructed in the superclass. For more information + * see \cite pluta2009. * * \ingroup ITKMetricsv4 */ diff --git a/Modules/Registration/Metricsv4/include/itkJensenHavrdaCharvatTsallisPointSetToPointSetMetricv4.h b/Modules/Registration/Metricsv4/include/itkJensenHavrdaCharvatTsallisPointSetToPointSetMetricv4.h index 4cf9ad3b080..4d63d969ed2 100644 --- a/Modules/Registration/Metricsv4/include/itkJensenHavrdaCharvatTsallisPointSetToPointSetMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkJensenHavrdaCharvatTsallisPointSetToPointSetMetricv4.h @@ -48,10 +48,9 @@ namespace itk * is transform each point (with the specified transform) and construct the * k-d tree from the transformed points. * - * Contributed by Nicholas J. Tustison, James C. Gee in the Insight Journal - * paper: https://doi.org/10.54294/791z7t + * Contributed by Nicholas J. Tustison, James C. Gee in \cite tustison2010a. * - * \note The original work reported in Tustison et al. 2011 optionally employed + * \note The original work reported in \cite tustison2011 optionally employed * a regularization term to prevent the moving point set(s) from coalescing * to a single point location. However, within the registration framework, * this term is of limited utility as such regularization is dictated by the @@ -60,11 +59,6 @@ namespace itk * be considered "moving" but this is also not applicable for this particular * implementation. * - * \par REFERENCE - * - * N.J. Tustison, S. P. Awate, G. Song, T. S. Cook, and J. C. Gee. - * "Point set registration using Havrda-Charvat-Tsallis entropy measures" - * IEEE Transactions on Medical Imaging, 30(2):451-60, 2011. * \ingroup ITKMetricsv4 */ diff --git a/Modules/Registration/Metricsv4/include/itkJointHistogramMutualInformationImageToImageMetricv4.h b/Modules/Registration/Metricsv4/include/itkJointHistogramMutualInformationImageToImageMetricv4.h index 4ba522fa636..2ccefacaa45 100644 --- a/Modules/Registration/Metricsv4/include/itkJointHistogramMutualInformationImageToImageMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkJointHistogramMutualInformationImageToImageMetricv4.h @@ -30,13 +30,7 @@ namespace itk { /** \class JointHistogramMutualInformationImageToImageMetricv4 * \brief Computes the mutual information between two images to be - * registered using the method referenced below. - * - * References: - * [1] "Optimization of Mutual Information for MultiResolution Image - * Registration" - * P. Thevenaz and M. Unser - * IEEE Transactions in Image Processing, 9(12) December 2000. + * registered using the method described in \cite thevenaz2000. * * \ingroup ITKMetricsv4 */ diff --git a/Modules/Registration/Metricsv4/include/itkMattesMutualInformationImageToImageMetricv4.h b/Modules/Registration/Metricsv4/include/itkMattesMutualInformationImageToImageMetricv4.h index dd24d27f7af..c76457e2658 100644 --- a/Modules/Registration/Metricsv4/include/itkMattesMutualInformationImageToImageMetricv4.h +++ b/Modules/Registration/Metricsv4/include/itkMattesMutualInformationImageToImageMetricv4.h @@ -41,7 +41,8 @@ namespace itk * This class is templated over the FixedImage type and the MovingImage * type. * - * The calculations are based on the method of Mattes et al [1,2] + * The calculations are based on the method of Mattes et al \cite + * mattes2001, \cite mattes2003, * where the probability density distribution are estimated using * Parzen histograms. Since the fixed image PDF does not contribute * to the derivatives, it does not need to be smooth. Hence, @@ -55,11 +56,11 @@ namespace itk * values are estimated at discrete position or bins. * The number of bins used can be set via SetNumberOfHistogramBins(). * To handle data with arbitrary magnitude and dynamic range, -* the image intensity is scaled such that any contribution to the -* histogram will fall into a valid bin. -* -* Once the PDF's have been constructed, the mutual information -* is obtained by double summing over the discrete PDF values. + * the image intensity is scaled such that any contribution to the + * histogram will fall into a valid bin. + * + * Once the PDF's have been constructed, the mutual information + * is obtained by double summing over the discrete PDF values. * * \warning Local-support transforms are not yet supported. If used, * an exception is thrown during Initialize(). @@ -78,19 +79,6 @@ namespace itk * * See ImageToImageMetricv4 for details of common metric operation and options. * - * References: - * [1] "Nonrigid multimodality image registration" - * D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank - * Medical Imaging 2001: Image Processing, 2001, pp. 1609-1620. - * [2] "PET-CT Image Registration in the Chest Using Free-form Deformations" - * D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank - * IEEE Transactions in Medical Imaging. Vol.22, No.1, - January 2003. pp.120-128. - * [3] "Optimization of Mutual Information for MultiResolution Image - * Registration" - * P. Thevenaz and M. Unser - * IEEE Transactions in Image Processing, 9(12) December 2000. - * * \sa itkImageToImageMetricv4 * \ingroup ITKMetricsv4 */ diff --git a/Modules/Registration/PDEDeformable/include/itkCurvatureRegistrationFilter.h b/Modules/Registration/PDEDeformable/include/itkCurvatureRegistrationFilter.h index 0bd6b83529a..2dfe9b3a09b 100644 --- a/Modules/Registration/PDEDeformable/include/itkCurvatureRegistrationFilter.h +++ b/Modules/Registration/PDEDeformable/include/itkCurvatureRegistrationFilter.h @@ -30,10 +30,7 @@ namespace itk * \brief Deformably register two images using the fast curvature algorithm. * * CurvatureRegistrationFilter implements the fast (i.e., O(n log n) ) - * registration method described in B. Fischer and J. Modersitzki, - * "A unified approach to fast image registration and a new curvature - * based registration technique," Linear Algebra and its Applications, - * vol. 380, pp. 107-124, 2004. + * registration method described in \cite fischer2004. * * A deformation field is represented as a image whose pixel type is some * vector type with at least N elements, where N is the dimension of diff --git a/Modules/Registration/PDEDeformable/include/itkDiffeomorphicDemonsRegistrationFilter.h b/Modules/Registration/PDEDeformable/include/itkDiffeomorphicDemonsRegistrationFilter.h index 0faf4c02246..552814a2080 100644 --- a/Modules/Registration/PDEDeformable/include/itkDiffeomorphicDemonsRegistrationFilter.h +++ b/Modules/Registration/PDEDeformable/include/itkDiffeomorphicDemonsRegistrationFilter.h @@ -30,12 +30,8 @@ namespace itk * \brief Deformably register two images using a diffeomorphic demons algorithm. * * This class was contributed by Tom Vercauteren, INRIA & Mauna Kea Technologies, - * based on a variation of the DemonsRegistrationFilter. The basic modification - * is to use diffeomorphism exponentials. - * - * See T. Vercauteren, X. Pennec, A. Perchant and N. Ayache, - * "Non-parametric Diffeomorphic Image Registration with the Demons Algorithm", - * Proc. of MICCAI 2007. + * based on a variation of the DemonsRegistrationFilter \cite + * vercauteren2007. The basic modification is to use diffeomorphism exponentials. * * DiffeomorphicDemonsRegistrationFilter implements the demons deformable algorithm that * register two images by computing the deformation field which will map a diff --git a/Modules/Registration/PDEDeformable/include/itkLevelSetMotionRegistrationFilter.h b/Modules/Registration/PDEDeformable/include/itkLevelSetMotionRegistrationFilter.h index 58edbdacedf..e9965963c67 100644 --- a/Modules/Registration/PDEDeformable/include/itkLevelSetMotionRegistrationFilter.h +++ b/Modules/Registration/PDEDeformable/include/itkLevelSetMotionRegistrationFilter.h @@ -27,7 +27,7 @@ namespace itk * \brief Deformably register two images using level set motion. * * LevelSetMotionFilter implements a deformable registration algorithm that - * aligns a fixed and a moving image under level set motion. The + * aligns a fixed and a moving image under level set motion \cite vemuri2003. The * equations of motion are similar to those of the * DemonsRegistrationFilter. The main differences are: * (1) Gradients of the moving image are calculated on a smoothed @@ -78,10 +78,6 @@ namespace itk * \warning This filter assumes that the fixed image type, moving image type * and deformation field type all have the same number of dimensions. * - * Ref: B.C. Vemuri, J. Ye, Y. Chen, C.M. Leonard. "Image - * registration via level-set motion: applications to atlas-based - * segmentation". Medical Image Analysis. Vol. 7. pp. 1-20. 2003. - * * \sa LevelSetMotionRegistrationFunction * \sa DemonsRegistrationFilter * \ingroup DeformableImageRegistration MultiThreaded diff --git a/Modules/Registration/PDEDeformable/include/itkSymmetricForcesDemonsRegistrationFunction.h b/Modules/Registration/PDEDeformable/include/itkSymmetricForcesDemonsRegistrationFunction.h index 4dc10fbcb53..54af821b47b 100644 --- a/Modules/Registration/PDEDeformable/include/itkSymmetricForcesDemonsRegistrationFunction.h +++ b/Modules/Registration/PDEDeformable/include/itkSymmetricForcesDemonsRegistrationFunction.h @@ -30,9 +30,9 @@ namespace itk * \class SymmetricForcesDemonsRegistrationFunction * * This class encapsulate the PDE which drives the demons registration - * algorithm (formula (5) in J.-P. Thirions's paper "Fast Non-Rigid Matching of - * 3D Medical Images", May 1995). It is used by SymmetricForcesDemonsRegistrationFilter - * to compute the output displacement field which will map a moving image onto a + * algorithm (formula 5 in \cite thirion1995). It is used by + * SymmetricForcesDemonsRegistrationFilter to compute the output + * displacement field which will map a moving image onto a * a fixed image. * * This class was contributed by Corinne Mattmann, ETH Zurich, Switzerland. diff --git a/Modules/Registration/RegistrationMethodsv4/include/itkSyNImageRegistrationMethod.h b/Modules/Registration/RegistrationMethodsv4/include/itkSyNImageRegistrationMethod.h index 39037875e00..59baa3d60e6 100644 --- a/Modules/Registration/RegistrationMethodsv4/include/itkSyNImageRegistrationMethod.h +++ b/Modules/Registration/RegistrationMethodsv4/include/itkSyNImageRegistrationMethod.h @@ -38,20 +38,10 @@ namespace itk * Output: The output is the updated transform which has been added to the * composite transform. * - * This implementation is based on the source code in Advanced Normalization Tools (ANTs) + * This implementation is based on the source code in Advanced + * Normalization Tools (ANTs) \cite avants2011. * - * Avants, B. B.; Tustison, N. J.; Song, G.; Cook, P. A.; Klein, A. & Gee, J. C. - * A reproducible evaluation of ANTs similarity metric performance in brain image registration. - * Neuroimage, Penn Image Computing and Science Laboratory, University of Pennsylvania, - * 2011, 54, 2033-2044 - * - * The original paper discussing the method is here: - * - * Avants, B. B.; Epstein, C. L.; Grossman, M. & Gee, J. C. - * Symmetric diffeomorphic image registration with cross-correlation: - * evaluating automated labeling of elderly and neurodegenerative brain. - * Med Image Anal, Department of Radiology, University of Pennsylvania, - * 2008, 12, 26-41 + * The original paper discussing the method is \cite avants2008. * * The method evolved since that time with crucial contributions from Gang Song and * Nick Tustison. Though similar in spirit, this implementation is not identical. diff --git a/Utilities/Doxygen/DoxygenConfig.cmake b/Utilities/Doxygen/DoxygenConfig.cmake index 0a66c6b5b40..79d02010fd5 100644 --- a/Utilities/Doxygen/DoxygenConfig.cmake +++ b/Utilities/Doxygen/DoxygenConfig.cmake @@ -164,6 +164,7 @@ set(DOXYGEN_GRAPHICAL_HIERARCHY "NO") set(DOXYGEN_DOT_IMAGE_FORMAT "svg") set(DOXYGEN_DOT_GRAPH_MAX_NODES "150") set(DOXYGEN_DOT_MULTI_TARGETS "YES") +set(DOXYGEN_CITE_BIB_FILES "${ITK_SOURCE_DIR}/Documentation/Doxygen/doxygen.bib") foreach( _FORMAT IN